Improving Watched Pseudo-Boolean Propagation with Significant Literals

Mia Müßig, Jan Johannsen

Institut für Informatik, LMU Munich

August 11, 2025

Pseudo-Boolean Problem

We have variables $x_i \in \{0,1\}$ and literals I_i representing either x_i or $\overline{x}_i := 1 - x_i$.

$$F = C_1 \wedge \ldots \wedge C_m$$
 $C_j = \left[\sum_i a_i I_i \geq b | a_i, b \in \mathbb{N}^+\right]$

We will assume: $a_1 \ge a_2 \ge \dots$

Pseudo-Boolean Problem

We have variables $x_i \in \{0,1\}$ and literals l_i representing either x_i or $\overline{x}_i := 1 - x_i$.

$$F = C_1 \wedge \ldots \wedge C_m$$
 $C_j = \left[\sum_i a_i I_i \geq b | a_i, b \in \mathbb{N}^+\right]$

We will assume: $a_1 \ge a_2 \ge \dots$

- Special cases: Cardinality constraints $(\forall i : a_i = 1)$, Clauses $(\forall i : a_i = 1, b = 1)$
- Efficient encoding of general Pseudo-Boolean constraints $\sum_i a_i \prod_j l_{i,j} \triangleright b$ with $a_i, b \in \mathbb{Q}$ and $\triangleright \in \{=, <, >, \leq, \geq\}$

Introduction - Unit Literals for SAT

Unit Literal

An unassigned literal l_j is unit if is the only unassigned literal remaining in an unsatisfied clause.

• A unit literal is forced by the current assignment ρ , afterwards its clause becomes satisfied

Introduction - Unit Literals for SAT

Unit Literal

An unassigned literal l_j is unit if is the only unassigned literal remaining in an unsatisfied clause.

- A unit literal is forced by the current assignment ρ , afterwards its clause becomes satisfied
- Efficient detection with two pointers "watching" two distinct unassigned literals
 - When assigning variable only update of its watched occurrences necessary
 - When unassigning variable no updates necessary

Introduction - Unit Literals for PBS

Example:

$$5x_1 + 4\overline{x}_2 + 2x_3 + 2x_4 \ge 10$$

Introduction - Unit Literals for PBS

Example:

$$5x_1 + 4\overline{x}_2 + 2x_3 + 2x_4 \ge 10$$

Slack

$$slack(C, \rho) = -b + \sum_{\bar{l}_i \notin \rho} a_i$$

Unit Literal

An unassigned literal l_j is unit if $slack(C, \rho) < a_j$.

• Contrary to SAT, one constraint can contain multiple unit literals and is not necessarily satisfied after their propagation

Introduction - Watched Literals for PBS

• Instead of two pointers now set of watched literals W(C)

Watchslack

$$wslack(C, \rho) = -b + \sum_{l_i \in W(C)} a_i \leq slack(C, \rho)$$

• Instead of two pointers now set of watched literals W(C)

Watchslack

$$wslack(C, \rho) = -b + \sum_{l_i \in W(C)} a_i \leq slack(C, \rho)$$

Unit Literal

No unit literals exist if and only if we can find W(C) with $wslack(C, \rho) \ge a_{max}$, where a_{max} is the largest coefficient of the unassigned literals.

Unit Literal

No unit literals exist if and only if we can find W(C) with $wslack(C,\rho) \geq a_{max}$, where a_{max} is the largest coefficient of the unassigned literals.

Dynamic Method:

 a_{max} needs to be updated in all occurrences when assigning and unassigning variables, worse performance than counting method

Unit Literal

No unit literals exist if and only if we can find W(C) with $wslack(C, \rho) \geq a_{max}$, where a_{max} is the largest coefficient of the unassigned literals.

Dynamic Method:

 a_{max} needs to be updated in all occurrences when assigning and unassigning variables, worse performance than counting method

Constant Method:1

- Instead choose $wslack(C, \rho) \ge a_1 \ge a_{max}$, so a constant bound
 - Watches more literals than necessary
 - False Positives

¹Jo Devriendt. Watched Propagation of 0-1 Integer Linear Constraints. 2020.

Significant Literals - Concept

- Choose watched literals with $wslack(C, \rho) \ge a_{smax}$, where a_{smax} is only updated for "significant" literals for the constraint
- Aim is to allow any constant criterion $isSig(C, a_i)$ to be used to determine if a literal is significant for a constraint

Significant Literals - Concept

- Choose watched literals with $wslack(C, \rho) \ge a_{smax}$, where a_{smax} is only updated for "significant" literals for the constraint
- Aim is to allow any constant criterion $isSig(C, a_i)$ to be used to determine if a literal is significant for a constraint
- If $isSig(C, a_i) = true$, $a_{smax} = a_{max}$ and we obtain the Dynamic method
- ullet If $isSig(C, a_i) = false$, $a_{smax} = a_1$ and we obtain the Constant method

Significant Literals - Example

$$C: 100y + \sum_{i=1}^{100} x_i \ge 10$$

• After $\rho = \{\overline{y}\}$ we have $slack(C, \rho) = 90$, $a_1 = 100$ and $a_{max} = 1$

Significant Literals - Example

$$C: 100y + \sum_{i=1}^{100} x_i \ge 10$$

- After $\rho = \{\overline{y}\}$ we have $slack(C, \rho) = 90$, $a_1 = 100$ and $a_{max} = 1$
- Until next restart the Constant method always needs to watch all remaining x_i literals, while the Dynamic method only needs to watch 11 literals
- ullet Goal is to identify variables like y with our definition of isSig(C, a_i)

Significant Literals - Criteria

• **Absolute Size** with cut-off $c \in \mathbb{N}$

$$isSig(C, a_i) := (a_i > c)$$

• **Absolute Max Size** with cut-off $c \in \mathbb{N}$

$$\mathsf{isSig}(C,a_i) := (a_1 > c)$$

• **Relative Size** with cut-offs $s \in \mathbb{R}^+$ and $n \in \mathbb{N}$

$$isSig(C, a_i) := \left(a_1 > s \sum_{j=2}^n a_j\right)$$

If we don't allow for significant literals in conflict constraints, we add
"C input" to the definition

Significant Literals - Implementation

- Modification of the state of the art PB Solver ROUNDINGSAT², "Constant" and "Counting" data is obtained from the unmodified solver
- Evaluation on the linear instances of the Pseudo-Boolean Competition 2024 with a timeout of 3600s

Experimental Evaluation

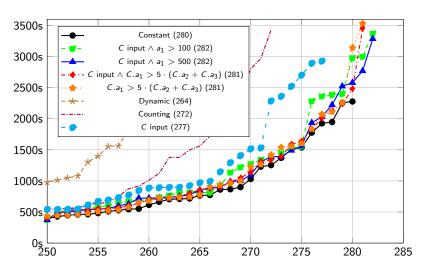


Figure: Runtime for 398 instances of the DEC-LIN track

Experimental Evaluation

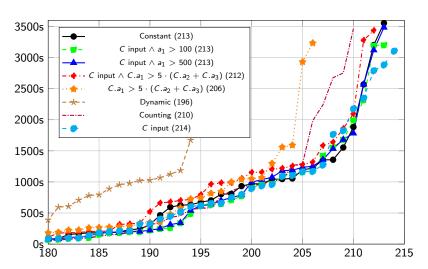


Figure: Runtime for 487 instances of the OPT-LIN track

Experimental Evaluation - Small Difference

- Significant literals leave cardinality constraints and clauses completely unaffected, which represent 96.3% of all constraints in DEC-LIN instances and 88.0% in OPT-LIN instances
- Only some optimizations developed by Devriendt for the Constant scheme are still valid for a non-constant a_{smax}

Experimental Evaluation - Coefficient Distribution

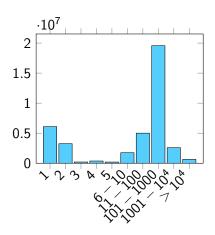


Figure: Input constraints

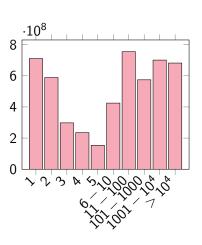


Figure: Learned constraints

Experimental Evaluation - Knapsack

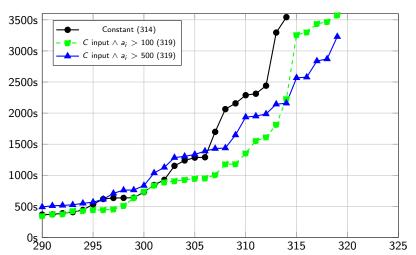


Figure: Runtime for 783 instances of the Knapsack dataset from the Pseudo-Boolean Competition

Future Work

- Experimentation with more complicated criteria for significance
- Adaptation of the logging method³ to reliable identify small performance improvements
- Choosing cut-off values per instance during the preprocessing step

³Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell, and Rui Zhao. Speeding up Pseudo-Boolean Propagation. 2024.