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Introduction - Pseudo-Boolean Solving (PBS)

Pseudo-Boolean Problem

We have variables xi ∈ {0, 1} and literals li representing either xi or
x i := 1− xi .

F = C1 ∧ . . . ∧ Cm Cj =
[∑

i

ai li ≥ b |ai , b ∈ N+
]

We will assume: a1 ≥ a2 ≥ . . .

Special cases: Cardinality constraints (∀i : ai = 1), Clauses
(∀i : ai = 1, b = 1)

Efficient encoding of general Pseudo-Boolean constraints∑
i ai

∏
j li ,j ▷ b with ai , b ∈ Q and ▷ ∈ {=, <,>,≤,≥}
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Introduction - Unit Literals for SAT

Unit Literal

An unassigned literal lj is unit if is the only unassigned literal remain-
ing in an unsatisfied clause.

A unit literal is forced by the current assignment ρ, afterwards its
clause becomes satisfied

Efficient detection with two pointers ”watching” two distinct
unassigned literals

When assigning variable only update of its watched occurrences
necessary
When unassigning variable no updates necessary
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Müßig, Johannsen (LMU Munich) Significant Literals August 11, 2025 3 / 16



Introduction - Unit Literals for PBS

Example:

5x1 + 4x2 + 2x3 + 2x4 ≥ 10

Slack

slack(C , ρ) = −b +
∑
l i /∈ρ

ai

Unit Literal

An unassigned literal lj is unit if slack(C , ρ) < aj .

Contrary to SAT, one constraint can contain multiple unit literals and
is not necessarily satisfied after their propagation
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Introduction - Watched Literals for PBS

Instead of two pointers now set of watched literals W (C )

Watchslack

wslack(C , ρ) = −b +
∑

li∈W (C)

ai ≤ slack(C , ρ)

Unit Literal

No unit literals exist if and only if we can find W (C ) with
wslack(C , ρ) ≥ amax , where amax is the largest coefficient of the
unassigned literals.
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Introduction - Watched Literals for PBS

Unit Literal

No unit literals exist if and only if we can find W (C ) with
wslack(C , ρ) ≥ amax , where amax is the largest coefficient of the
unassigned literals.

Dynamic Method:

amax needs to be updated in all occurrences when assigning and
unassigning variables, worse performance than counting method

Constant Method:1

Instead choose wslack(C , ρ) ≥ a1 ≥ amax , so a constant bound

Watches more literals than necessary
False Positives

1Jo Devriendt. Watched Propagation of 0-1 Integer Linear Constraints. 2020.
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Significant Literals - Concept

Choose watched literals with wslack(C , ρ) ≥ asmax , where asmax is
only updated for ”significant” literals for the constraint

Aim is to allow any constant criterion isSig(C , ai ) to be used to
determine if a literal is significant for a constraint

If isSig(C , ai ) = true, asmax = amax and we obtain the Dynamic
method

If isSig(C , ai ) = false, asmax = a1 and we obtain the Constant method
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Significant Literals - Example

C : 100y +
100∑
i=1

xi ≥ 10

After ρ = {y} we have slack(C , ρ) = 90, a1 = 100 and amax = 1

Until next restart the Constant method always needs to watch all
remaining xi literals, while the Dynamic method only needs to watch
11 literals

Goal is to identify variables like y with our definition of isSig(C , ai )
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Müßig, Johannsen (LMU Munich) Significant Literals August 11, 2025 8 / 16



Significant Literals - Criteria

Absolute Size with cut-off c ∈ N

isSig(C , ai ) := (ai > c)

Absolute Max Size with cut-off c ∈ N

isSig(C , ai ) := (a1 > c)

Relative Size with cut-offs s ∈ R+ and n ∈ N

isSig(C , ai ) :=

a1 > s
n∑

j=2

aj


If we don’t allow for significant literals in conflict constraints, we add
”C input” to the definition
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Significant Literals - Implementation

Modification of the state of the art PB Solver RoundingSAT2,
”Constant” and ”Counting” data is obtained from the unmodified
solver

Evaluation on the linear instances of the Pseudo-Boolean Competition
2024 with a timeout of 3600s

2https://gitlab.com/MIAOresearch/software/roundingsat, Commit d34b6bed
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Experimental Evaluation
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Counting (272)
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Figure: Runtime for 398 instances of the DEC-LIN track
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Experimental Evaluation - Small Difference

Significant literals leave cardinality constraints and clauses completely
unaffected, which represent 96.3% of all constraints in DEC-LIN
instances and 88.0% in OPT-LIN instances

Only some optimizations developed by Devriendt for the Constant
scheme are still valid for a non-constant asmax
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Experimental Evaluation - Coefficient Distribution
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Figure: Input constraints
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Figure: Learned constraints

Müßig, Johannsen (LMU Munich) Significant Literals August 11, 2025 14 / 16



Experimental Evaluation - Knapsack
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Figure: Runtime for 783 instances of the Knapsack dataset from the
Pseudo-Boolean Competition
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Future Work

Experimentation with more complicated criteria for significance

Adaptation of the logging method3 to reliable identify small
performance improvements

Choosing cut-off values per instance during the preprocessing step

3Robert Nieuwenhuis, Albert Oliveras, Enric Rodŕıguez-Carbonell, and Rui Zhao.
Speeding up Pseudo-Boolean Propagation. 2024.
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