International Workshop
Pragmatics of SAT (POS'25)

Revisiting =
Clause Vivification

Florian Pollitt" Mathias Fleury'
[Armin Biere|" Karem Sakallah
Marijn Heule“ Jiawei Chen
Yonathan Fisseha

T University of Freiburg
Glasgow, Scotland Carnegie Mellon University

August 11, 2025 University of Michigan

Outline

Motivation: museum, regression, inprocessing

Benchmarks: objectives, factoring benchmarks

vivification 4.0

Vivification: idea, history,

Experiments: run-time plots, details

2/37

%

2000 3000 4000

1000

Legacy Solvers on SAT Competition Anniversary Benchmarks

0 1000

T
2000

T
3000

4000

5000

+

4025 kissat-2024
3953 kissat-mab-2021
3930 kissat-mab-hywalk-2022
3906 sbva—cadical-2023
3886 kissat-2020
3784 cadical-2019
3703 maple-lcm-disc-cb-dI-v3-2019
3640 maple-lcm~-dist-cb-2018
3636 maple-lcm—dist-2017
3570 maple-comsps-drup-2016
3470 lingeling—2014
3354 abcdsat-2015
3347 lingeling-2013
3214 glucose-2011
3199 glucose-2012
3181 cryptominisat-2010
3027 minisat-2008
3004 precosat-2009
2700 minisat-2006
v 2598 satelite-gti-2005
4 2568 rsat-2007
2142 berkmin—-2003
* 1890 zchaff-2004
41715 chaff-2001
* 1409 limmat-2002
@ 865 posit—-1995
<% 831 boehm1-1992
0 795 grasp-1997

0 x

oobPedesBHEOKSIDO

4/37

How do SAT solvers work?

= Ongoing debate among the senior authors of this paper:
1. What happened since learning was added to SAT solving?
2. Can we understand why state-of-the-art solvers are getting faster and faster?
3. Are there untravelled paths which lead to improve them further?

= Some joint understanding evolved about:

learning, unlearning, branching, restarts, preprocessing, inprocessing, portfolio, . ..

= But what method / should be used to investigate that?

5/37

Kissat 3.0.0 vs. 3.1.1 Performance Regression on Factoring Benchmarks

600

400

200

o

© 3.0.0-irredbin
4311

T T T T T T
0 1000 2000 3000 4000 5000

accidentally run the “wrong” version 3.0.0-irredbin

(in Nov. 2023 while working on factoring benchmarks)

10000 £

1000 E

100 K

1 10 100 1000 10000

3.1.1 y-axis, i.e., dots above
diagonal mean 3.0.0-irredbin is faster

6/37

Inprocessing and Vivification 4.0

20 years ago preprocessing gave a huge boost

15 years ago inprocessing turbo-charged it (as in the last 5 years again)
= inprocessing allows to preempt preprocessing (pre-solving) and resume it later
= since 10 years we have proofs for this combination of search and simplification
evaluated these trade-offs with SAT solvers Satch and TabularaSAT

= non-satisfactory results as they are far behind Kissat

= so we are back to to evaluating Kissat with things switched off/on

focus in this paper on vivification in its inprocessing version

here we discuss newest version (vivification 4.0) in Kissat and CaDiCalL

performance regression actually due to a subtle change in vivification

7137

Benchmarks

Benchmark Objectives

similar application (family)

ideally of real practical value

different sizes and hardness

’ scalable: hardness (solving time) increases with size / parameter

. ’can generate many of them | (notjustph10, ph11, ph12, ph13,...)

= still in reach of current (CDCL) solvers

= allows us to study effects of techniques / configurations / regressions

9/37

Unsatisfiable Factoring Benchmarks

= generated 750 primes p as bit-vector constants

= 50 for each of the 15 bit-widths n = 33...47

= “equally spaced” (next prime picked after constant delta 2" /50)
= generated simple SMT bit-vector formulap =x -y

= assuming x,y # 1 and no multiplication overflow butnotx <y

m bit-blasted to CNF with Bitwutzla

10/37

Pseudocode Benchmark Generator

O 00 N OO U1 A W N =

create-benchmarks (lower-bitwidth, upper-bitwidth, primes-per-bitwidth)
for current-bitwidth from lower-bitwidth to higher-bitwidth
low = (1 << current-bitwidth) //“~" = bit-shifting
high = (1 < (current-bitwidth + 1))
increment = (high - low) / primes-per-bitwidth // uniform distribution
for k from 1 to primes-per-bitwidth
lower-limit = (1 << current-bitwidth) + increment * (k - 1)
upper-limit = (1 << current-bitwidth) + increment * k
prime = find-smallest-prime-between (lower-limit, upper-limit)
if prime generate-factoring-smt (prime, current-bitwidth)

11/37

factoring-47-130885865177141.smt2

(set—info :smt—lib—version 2.6)

(set—logic QF_BV)

(set—option :produce—models true)

(set—info :status unsat)

(declare—fun a () (_ BitVec 47))

(declare—fun ¢ () (_ BitVec 47))

(declare—fun d () (_ BitVec 47))

(assert (= a (bvmul c d)))

(assert (= a #b11101110000101000111101100000000000000000110101))
(assert (not (= c #b001)))
(assert (not (= d #b001)))
(assert (not (bvumulo c d))) ; ensure no overflow

(check—sat)

(exit)

12/37

factoring-47-130885865177141.cnf

¢ CNF dump 1 start
¢ Bitwuzla version main—3ea759df11285e722b565c0b5¢132dc0bb77066f
p cnf 8926 26635
10

47 48 49 0

—49 —47 0

—49 —48 0

46 —49 50 0

—50 —46 0

—-50 49 0

45 -50 51 0

—51 450

—51 50 0

13/37

Benchmarks

ing

Factor

ions on

Learned Clauses after Reduct

ining

Rema

4

=]
&
Bes

3.0.0-irre

1.4x10"

1.2x107

1x107

8x10°

6x10°

4x10°0

2x10°

I
3
8
8
S
2
&

200000 -

150000 |-

100000 |-

50000 -

14/37

x-axis number of conflicts where reduction occurred

Remaining Learned Clauses for factoring-47-130885865177141
300000
factoring-47-130885865177141 + T
250000 -
200000 -
150000 |- .
100000 |- -
PO N £
i fn A
[Y ﬁf”&’ffwﬁ f‘ 'Mf m»:, - ° *
o pfuntet A R X
o A A fT T
50000 |- 3%#%34‘* + Fia it £y o i
s 777
#1 ;jf’ﬁw* ;‘”‘f
2x‘105 4)(‘10G 6)(‘106 Bx‘lbﬁ 1x‘107 1 2;107 1.4x107
x-axis number of conflicts where reduction occurred 15/37

$ kissat factoring—47—130885865177141.cnf

O .

[alslalalalalalalale el elNe el e RN e

— 1657.96 24 14 95 613

315630 1 10106593 87479 54% 11 10415 1815 20%
— 1662.11 24 14 95 614 315642 1 10131354 87279 54% 11 10415 1815 20%
— 1666.21 24 14 95 615 315655 1 10156134 86889 54% 11 10415 1815 20%
— 1670.39 24 13 95 616 315658 1 10180933 87319 54% 11 10415 1815 20%
— 1674.59 24 13 95 617 315671 1 10205752 87083 54% 10 10415 1815 20%
s 1676.07 21 13 95 617 315673 1 10214679 95895 54% 10 10278 1815 20%
e 1676.07 17 13 95 617 315673 1 10214679 95895 54% 10 10148 1768 20%
seconds switched rate trail variables
MB reductions conflicts glue remaining
level restarts redundant irredundant
s 1676.07 17 13 95 617 315673 1 10214679 95895 54% 10 10064 1768 20%
e 1676.08 17 13 95 617 315673 1 10214679 95895 54% 10 10057 1765 20%
— 1677.03 13 14 95 618 315680 1 10230592 17003 54% 11 10057 1765 20%
— 1678.82 15 14 95 619 315689 1 10255452 22564 55% 11 10057 1765 20%
conflicts: 13264941 6644.79 per second
reductions: 734 18072 interval
maximum-resident—set—size: 30498816 bytes 29 MB

process—time:

33m 16s

1996.29 seconds

16/37

Benchmark Scalability

200 1000
|

solving time in seconds
50
|

10

I I I I I
1le+10 le+11 le+12 le+13 le+14

prime number to factor

17/37

%

Vivification in a Nutshell

= given CNF F and a candidate clause|C = a v b Vv c v d | to be vivified

= assume negations of literals in clause, i.e.,|-a | | -b || —c|and|—~d| one by one

inbetween assumptions propagate them on F ignoring C
1. on the candidate clause C is unit implied and can be removed
2. if literal, say d, becomes clause C is also unit implied and can be removed

3. if literal, say d, becomes during propagation shrink C (by removing d)

first two outcomes: asymmetric tautology (AT) or reverse unit propagated (RUP)

goal is to apply on all clauses of CNF until completion (costly)

19/37

Vivification/Distillation History

Vivification 1.0

distillation [HanSomenzi-DAC'07] with trie to reuse propagations
vivification [PietteHamadiSais-ECAI'08] independently

Vivification 2.0

CaDiCal 2017 inprocessing version + simulating trie

Vivification 3.0

Maple-LCM-dist-2017 winner SC 2017 [LuoLiXiaoManyalLu-IJCAI'17]
focusing on redundant/learned clauses

Vivification 4.0

this paper |new inprocessing version revisited precisely

20/37

Scheduling Vivification 4.0

vivify (CNF F) // CNF updated in place / passed by reference
ticks-budget = search-ticks-since-last-vivificationstats x relative-vivification-effortoption
tier-1-budget = ticks-budget x relative-tier-1-budgetption
tier-2-budget = ticks-budget x relative-tier-2-budget,ption
tier-3-budget = ticks-budget x relative-tier-3-budgetption
irredundant-budget = ticks-budget x relative-irredundant-budgetyption
remaining-ticks = vivify-tier(F, tier-1 clauses of F, tier1-budget)
remaining-ticks = vivify-tier(F, tier-2 clauses of F, tier2-budget + remaining-ticks)
remaining-ticks = vivify-tier(F, tier-3 clauses of F, tier3-budget + remaining-ticks)
vivify-tier(F, irredundant clauses of F, irredundant-budget + remaining-ticks)

O 00 N O U A W N =

21/37

Tier Vivification 4.0

ua A W N =

O O 00 N O

vivify-tier (CNF F, CNF G, ticks-budget) // update subset of clauses in original CNF in place

limit = ticksstats + ticks-budget // global variable “tickssats” updated during propagation
sort literals in clauses C € G by number of occurrences (more occurrences first)
let G; be the sub-set of clauses of G which were not tried during vivification last time
let G, = G\Gy // new clauses or clauses already tried last time
sort G, and separately G, lexicographically w.r.t. literal occurrences (more first)
// decision level set to zero at this point
for all clauses C in the sequence G;, G, sorted as in line 5 as long ticksstats < limit
if vivify-clause (F, C) then increment vivifiedstats
backtrack to decision level zero
if tickSstats > limit return 0 // incomplete - remember untried clauses
return limit — ticksstats // return unused ticks budget - no untried clauses remembered

22/37

Clause Vivification 4.0 Part 1

00 N O U WN =

J Ny
N = O

—_
w

vivify-clause (CNF F, clause C) // update F and C in place

mark C as having been tried // putsitin G, next time
let C =44V --- V¥, sorted by number of occurrences (more occurrences first)
find maximal m such that ¢; is assigned to false at decision level i for all i < m // reuse trail
if m > 0 and decision level larger than m — 1 backtrack to decision level m — 1
add m — 1 to both probesstats and reusedsiats // reused m decisions / probes
literal implied = L, clause conflict=_1 //initialize both to be undefined denoted as 1"
fori=m...naslong conflict=_1 //andimplied = L
if ¢; is assigned to false continue
if ¢; is assigned to true then implied = ¢; and break
increase decision level and assign ¢; to false, increment probessats
// temporarily disable propagation over C, i.e., C is simply skipped during propagation
conflict = propagate (F, C) // update global assignment and tickSsats

// now we have either implied # L, conflict # L, or C is falsified by the current assignment
(subsuming, learned, irredundant) = vivify-analyze (C, conflict, implied)

23/37

Clause Vivification 4.0 Part 2

13
14
15

16
17
18
19
20
21
22
23
24
25
26

(subsuming, learned, irredundant) = vivify-analyze (C, conflict, implied)
if subsuming # L

remove C from F, increment subsumedsiats and |return truel

/1 ...and need to make “subsuming” irredundant if it was redundant but C not
if [learned| < |C| // actually “learned c C" as it is a decision learned clause

replace C in F by learned, increment shrunkensies and [return true |2

if implied # L and C redundant

// regression version “without-implied” would only return false but the “default” version has:

remove C from F, increment impliedsias and [return truel?
conflicting = conflict # L Vv implied # L
if conflicting and C irredundant as well as analysis resolved only irredundant clauses

remove C from F, increment asymmetricsiais and | return true |*

if implied # L and vivify-instantiate (F, C, ¢;) // C falsified at decision level n

remove ¢, from C, increment instantiatedsiatis and | return true |

return false

24/37

Experiments

Factoring Benchmarks

450 500 550 600 650 700 750

400

750 instances (100%)

A 750 discard-both
0 750 default

x 750 keep-implied
+ 712 no-vivify

0 1000

2000

3000

4000

T
5000

26/37

SAT Competition 2023

240 250 260 270 280 290 300

230

297 'in'stanc‘es'(7'4%) '

0 297 default

A 291 discard-both
x 290 keep-implied
-+ 288 no-vivify

2000

3000

4000

T
5000

27/37

SAT Competition 2024

320

300

280

260

‘325 instances (81%)

0 325 default

A 324 discard-both
+ 320 no-vivify
x 319 keep-implied

T T T T T
1000 2000 3000 4000 5000

28/37

SAT Competition 2024

o

o _|

o

LD .

+ satisfiable

o o unsatisfiable
— 8 — 4
g S 0 T ©
3 o
8 S - -
£ ™ +
o
£E 8 _ 0
< o
= I3V
=}
& o
3 g

—

+ +
o — &
I I I I I I
0 1000 2000 3000 4000 5000

keep—both (time in seconds)
29/37

Factoring Benchmarks

default (time in seconds)

1000 2000 3000 4000 5000

0

O unsatisfiable

- linear regression

0

I I I I
1000 2000 3000 4000

keep—both (time in seconds)

5000

30/37

Factoring Benchmarks Times

1 1 1 1 1 1 1

solving time

o .
" S §eath t!me 3
T O simplify time
I P
) vivify time
v o
v S 7 3
7] - E
£
¢ o
E « 3 3
=]
©
5 = I
] E

.

o T T T T T T T

0 100 200 300 400 500 600 700
factoring instances (sorted by solving time)

31/37

Clause Vivification 4.0 Part 2

13
14
15

16
17
18
19
20
21
22
23
24
25
26

(subsuming, learned, irredundant) = vivify-analyze (C, conflict, implied)
if subsuming # L

remove C from F, increment subsumedsiats and |return truel

/1 ...and need to make “subsuming” irredundant if it was redundant but C not
if [learned| < |C| // actually “learned c C" as it is a decision learned clause

replace C in F by learned, increment shrunkensies and [return true |2

if implied # L and C redundant

// regression version “without-implied” would only return false but the “default” version has:

remove C from F, increment impliedsias and [return truel?
conflicting = conflict # L Vv implied # L
if conflicting and C irredundant as well as analysis resolved only irredundant clauses

remove C from F, increment asymmetricsiais and | return true |*

if implied # L and vivify-instantiate (F, C, ¢;) // C falsified at decision level n

remove ¢, from C, increment instantiatedsiatis and | return true |

return false

32/37

Factoring Benchmarks Vivified Clauses

vivified ——
implied ——
. shrunken
3 subsumed
instantiated
asymmetric

number of clauses

1000 10000100000 1x10% 1x107

T T T T T T T
0 100 200 300 400 500 600 700
factoring instances (sorted by number of vivified clauses)

33/37

%

Conclusion

= need new benchmarks to understand why solvers get faster and faster
= found a simple scalable benchmark set
= triggered an interesting regression

= Vivification 4.0
Future Work

= more practical scalable benchmarks

m scalable satisfiable benchmarks

Supported by Baden-Wirttemberg bwHPC, DFG grant INST 35/1597-1 FUGG and gift from Intel. 35/37

SAT Competition 2024 Benchmarks Times

1 1 1 1 1 1 1
solving time
o | i L
" 8 'Sea?:h t!me :
'8 = simp !fy t!me
o vivify time
v o
(] o 7 3
n - E
k=
Y o
E « 3 E
=
©
- I
e E
.
o T T T T T T T

0 50 100 150 200 250 300 350 400
sc2024 instances (sorted independently)

36/37

SAT Competition 2024 Benchmarks Vivified Clauses

| | | | | | |
vivified ——
shrunken
4 subsumed
3 implied ——
instantiated
4 asymmetric

number of clauses

T T T T T T T
50 100 150 200 250 300 350 400
sc2024 instances (sorted independently)

1000 10000100000 1x10% 1x107

o

37/37

	Motivation
	Benchmarks
	Vivification
	Experiments
	Summary

