A Study of Divide and Distribute Fixed Weights and its Variants

Cayden R. Codel and Marijn J. H. Heule

Based on the PoS submission found at http://crcodel.com/research/ddfw_pos.pdf and the larger research thesis found at http://crcodel.com/research/ddfw_thesis.pdf.

We studied the Divide and Distribute Fixed Weights (DDFW) stochastic local search algorithm

We studied the Divide and Distribute Fixed Weights (DDFW) stochastic local search algorithm

DDFW finds satisfying assignments by minimizing unsatisfied clause weight

We studied the Divide and Distribute Fixed Weights (DDFW) stochastic local search algorithm

DDFW finds satisfying assignments by minimizing unsatisfied clause weight

In local minima, DDFW distributes weight from satisfied to unsatisfied clauses

We studied the Divide and Distribute Fixed Weights (DDFW) stochastic local search algorithm

DDFW finds satisfying assignments by minimizing unsatisfied clause weight

In local minima, DDFW distributes weight from satisfied to unsatisfied clauses

We studied how to best flip variables and distribute weight by testing DDFW against modern hard benchmarks

The DDFW algorithm

Variable flip variants

Weight redistribution variants

The DDFW algorithm

All clauses receive an initial weight ($w_{init}[=8]$)

All clauses receive an initial weight ($w_{\text{init}}[=8]$)

DDFW flips variables which most reduce the unsatsfied clause weight (W_U)

All clauses receive an initial weight ($w_{\text{init}}[=8]$)

DDFW flips variables which most reduce the unsatsfied clause weight (W_U)

In local minima, DDFW moves weight from one satisfied neighbor to each unsatisfied clause

All clauses receive an initial weight ($w_{\text{init}}[=8]$)

DDFW flips variables which most reduce the unsatsfied clause weight (W_U)

In local minima, DDFW moves weight from one satisfied neighbor to each unsatisfied clause

DDFW is the only SLS algorithm in the UBCSAT framework to efficiently solve the n = 7824 Pythagorean triples instance

The DDFW algorithm as pseudocode

Algorithm 1: DDFW

1	Input: CNF formula ${\cal F}$			
2	Set all clause weights to $w_{ m init}=8$			
3	3 $lpha \leftarrow$ randomly generated truth assignment			
4	for MAX-FLIPS <i>times</i> do			
5	if assignment α satisfies \mathcal{F} then return α			
6	if flipping a variable reduces W _U then			
7	Flip a literal that reduces W_U the most			
8	else			
9	for each unsatisfied clause C _i do			
10	$C_k \leftarrow$ maximum-weight neighbor of C_i			
11	if weight of $C_k > w_{init}$ then			
12	Transfer a weight of 2 from C_k to C			
13	else			
14	Transfer a weight of 1 from C_k to C			
15 return "No satisfying assignment"				

The DDFW algorithm as pseudocode

Algorithm 2: DDFW

Benchmark set

Ten encodings of matrix multiplication challenges

Ten random 3-SAT instances from the 2018 SAT Competition

Two encodings of the n = 7824 Pythagorean triples problem

Two encodings of asias and three of Steiner triple problems

All CNFs can be found at https://github.com/marijnheule/benchmarks and http://satcompetition.org The DDFW algorithm

Variable flip variants

Weight redistribution variants

Variable flip variants

DDFW greedily flips variables which reduce W_U the most

DDFW greedily flips variables which reduce W_U the most Idea: flip W_U -reducing variables probabilistically DDFW greedily flips variables which reduce W_U the most

Idea: flip W_U -reducing variables probabilistically

We investigated a uniform and a weighted probability distribution

Variable flip variant experimental results

Averaged over all problem instances. The greedy (original) method performed significantly better than the variants.

The DDFW algorithm

Variable flip variants

Weight redistribution variants

Weight redistribution variants

DDFW distributes 1 or 2 units of weight between clauses

Weight redistribution variants

DDFW distributes 1 or 2 units of weight between clauses

We can generalize to a linear rule:

Algorithm 4: Linear weight transfer rule

1 if weight of unsat neighbor $C_k > w_{init}$ then 2 | Transfer a weight of $a_> \times w(C_k) + c_>$ from C_k to C_j 3 else

4 | Transfer a weight of $a_{\leq} \times w(C_k) + c_{\leq}$ from C_k to C_j

Weight redistribution variants experimental results

 $w_{\rm init}=100.$ Results averaged over all instances and 100 runs per instance, five million flip timeout

Distribution policy	Avg lowest unsat	Solve %
Original DDFW	36.57	0.85
$(c_{>}, c_{\leq}) = (10, 25)$	29.16	1.7
$(a_{>},a_{\leq}) = (0.05, 0.05)$	23.82	2.96
$(a_{>}, c_{>}) = (a_{\leq}, c_{\leq}) = (0.1, 5)$	22.05	2.67

Linear rule performed about 40% better

Weight redistribution variants experimental results

Parameter searches across the matrix multiplication challenges

Note greater effect of $a_>$ on shape of right plot, while c_\leq determines shape of left plot

Weight redistribution variants continued

Can also distribute weight from entire neighborhoods

Weight redistribution variants continued

Can also distribute weight from entire neighborhoods

Two methods tested: apply linear rule to each clause or to clause proportional to clause weight

Weight redistribution variants continued

Can also distribute weight from entire neighborhoods

Two methods tested: apply linear rule to each clause or to clause proportional to clause weight

Experimental results disappointing but show some promise

Distribution policy	Avg lowest unsat	Matrix lowest unsat
Original DDFW	36.57	57.02
Proportional	46.91	27.0
Direct	45.29	33.91

A simple generalization of the weight distribution method for $\rm DDFW$ yields up to 40% improvement

A simple generalization of the weight distribution method for $\rm DDFW$ yields up to 40% improvement

More complex weight transfer rules may be more effective than a linear one

A simple generalization of the weight distribution method for DDFW yields up to 40% improvement

More complex weight transfer rules may be more effective than a linear one

Spreading weight across more clauses in a neighborhood could cause $\rm DDFW$ to escape local minima faster