Certifying CNF Encodings of Pseudo-Boolean Constraints

Stephan Gocht, Ruben Martins and Jakob Nordström

July 2021

 \blacktriangleright formally verify solver? usually not feasible / too costly

- \blacktriangleright formally verify solver? usually not feasible / too costly
- \blacktriangleright instead: formally verify answer!

 \blacktriangleright formally verify solver? usually not feasible / too costly

 \blacktriangleright instead: formally verify answer!

 \blacktriangleright formally verify solver? usually not feasible / too costly

 \triangleright instead: formally verify answer!

Stephan Gocht — stephan.gocht@cs.lth.se [Certifing PB to CNF](#page-0-0) 2/ 13

 \blacktriangleright formally verify solver? usually not feasible / too costly

 \triangleright instead: formally verify answer!

 \blacktriangleright formally verify solver? usually not feasible / too costly

instead: formally verify answer!

 \blacktriangleright formally verify solver? usually not feasible / too costly

instead: formally verify answer!

SAT Solving - A Success Story for Certifying Algorithms ...

 \triangleright SAT = satisfiability testing of propositional formulas

 \triangleright SAT competition requires solver to produce certificate (aka proof logging)

SAT Solving — A Success Story for Certifying Algorithms . . .

- \triangleright SAT = satisfiability testing of propositional formulas
- ▶ SAT competition requires solver to produce certificate (aka proof logging)
- ▶ Proof formats such as RUP [\[GN03\]](#page-37-0), TraceCheck [\[Bie06\]](#page-36-0), GRIT [\[CFMSSK17\]](#page-36-1), LRAT $[CFHH+17]$ $[CFHH+17]$; DRAT $[WHH14]$ has become standard.

SAT Solving — A Success Story for Certifying Algorithms . . .

- \triangleright SAT = satisfiability testing of propositional formulas
- \triangleright SAT competition requires solver to produce certificate (aka proof logging)
- ▶ Proof formats such as RUP [\[GN03\]](#page-37-0), TraceCheck [\[Bie06\]](#page-36-0), GRIT [\[CFMSSK17\]](#page-36-1), LRAT $[CFHH+17]$ $[CFHH+17]$; DRAT $[WHH14]$ has become standard.

 \blacktriangleright certificates can help to

- \blacktriangleright prove correctness of answer
- \triangleright detect and fix bugs, even when solver produced correct answer
- **D** audit answer later on
- \triangleright explain what solver is doing

```
. . . That is Easy to Use . . .
```


. . . That is Easy to Use . . .

. . . That is Easy to Use . . .

. . . Except for SAT Solving Techniques That Can't Be Certified

- \triangleright too much overhead / too complicated proof logging for
	- ▶ Parity reasoning (as in CryptoMiniSat [\[Cry\]](#page-37-1) and Lingeling [\[Lin\]](#page-38-0))
	- \triangleright Counting arguments (as in Lingeling)
	- \triangleright Symmetry breaking (as in BreakID [\[Bre\]](#page-36-3))
	- \Rightarrow no available implementations for proof logging

In Not using these techniques \Rightarrow exponential loss in reasoning power / performance

. . . Except for SAT Solving Techniques That Can't Be Certified

- \triangleright too much overhead / too complicated proof logging for
	- ▶ Parity reasoning (as in CryptoMiniSat [\[Cry\]](#page-37-1) and Lingeling [\[Lin\]](#page-38-0))
	- \triangleright Counting arguments (as in Lingeling)
	- \triangleright Symmetry breaking (as in BreakID [\[Bre\]](#page-36-3))
	- \Rightarrow no available implementations for proof logging
- In Not using these techniques \Rightarrow exponential loss in reasoning power / performance
- \blacktriangleright How about practical proof logging for stronger solving paradigms?
	- \blacktriangleright MaxSAT solving
	- \blacktriangleright constraint programming (CP)
	- \blacktriangleright mixed integer programming (MIP)
	- \triangleright algebraic reasoning / Gröbner basis computations
	- \blacktriangleright pseudo-Boolean satisfiablity and optimization

many new proof systems with implemented proof checkers:

- \triangleright propagation redundancy (PR) [\[HKB17\]](#page-38-1)
- ▶ practical polynomial calculus (PAC) [\[RBK18,](#page-39-1) [KFB20\]](#page-38-2)
- **•** propagation redundancy for BDDs [\[BB21\]](#page-36-4)
- \triangleright Max-SAT resolution [\[PCH21\]](#page-38-3)
- **Desimale Boolean proofs [\[EGMN20,](#page-37-2) [GN21\]](#page-38-4)**

Our Work

- **EX general purpose proof format: pseudo-Boolean proofs (PBP)**
- \blacktriangleright reference implementation of verifier: VeriPB¹
- \blacktriangleright allows easy proof logging for
	- reasoning with 0-1 linear inequalities (by design)
	- \blacktriangleright all-different constraints [\[EGMN20\]](#page-37-2)
	- \triangleright subgraph isomorphism [\[GMN20\]](#page-37-3)
	- \triangleright clique and maximum common (connected) subgraph [\[GMM](#page-37-4)+20]
	- \triangleright parity reasoning [\[GN21\]](#page-38-4)
	- \triangleright SAT pre- and inprocessing [\[GN21\]](#page-38-4)

This Work (by using VeriPB)

- roof logging for translating 0-1 linear inequalities to CNF (work in progress) so far only sequential counter [\[Sin05\]](#page-39-2), many more encodings exist
- ▶ allows proof logging for SAT-based pseudo-Bolean solving

¹ <https://gitlab.com/MIAOresearch/VeriPB>

System Overview

Basic Notation

Starting from

 $x_1 + x_2 + x_3 > 2$

want to derive

- $\bar{x}_1 + s_{1,1} > 1$
- $x_1 + \bar{s}_1$ ₁ > 1
- $\bar{x}_2 + s_{2,1} \geq 1$
- $\bar{s}_{1,1} + s_{2,1} \geq 1$

. . .

 $x_2 + s_{1,1} + \bar{s}_{2,1} \geq 1$ $\bar{x}_2 + \bar{s}_{1,1} + s_{2,2} > 1$

- \triangleright Boolean variable x with domain 0 (false) or 1 (true)
- lacktriangleright Literal: x or its negation $\bar{x} = 1 x$
- ▶ Pseudo-Boolean (PB) constraint: linear (in-)equality over literals
- \blacktriangleright Clause: at-least-one constraint
- Proof Format:
	- ▶ based on pseudo-Boolean constraints
	- \triangleright has operations to reason with PB constraints

Sequential Counter Encoding

High level specification:

Block 1: $x_1 = s_{1,1}$ Block 2: $x_2 + s_{1,1} = s_{2,1} + s_{2,2}$ $s_{2,1} \ge s_{2,2}$ Block 3: $x_3 + s_{2,1} + s_{2,2} = s_{3,1} + s_{3,2} + s_{3,3}$ $s_{3,1} \ge s_{3,2} \ge s_{3,3}$

High Level Specification

In Specification is pseudo-Boolean!

High Level Specification

In Specification is pseudo-Boolean!

- \triangleright s_{i,j} variables are fresh, i.e., not in formula
- \triangleright \Rightarrow always OK to add these constraints
- \triangleright can be derived in VeriPB proof system

High Level Specification:

► to enforce $x_1 + x_2 + x_3 \ge 2$ need to fix output bits $s_{3,1}, s_{3,2}, s_{3,3}$

High Level Specification:

► to enforce $x_1 + x_2 + x_3 \ge 2$ need to fix output bits $s_{3,1}, s_{3,2}, s_{3,3}$ Add specifications together:

 $x_1 + x_2 + x_3 + s_{1,1} + s_{2,1} + s_{2,2} = s_{1,1} + s_{2,1} + s_{2,2} + s_{3,1} + s_{3,2} + s_{3,3}$

High Level Specification:

► to enforce $x_1 + x_2 + x_3 \ge 2$ need to fix output bits $s_{3,1}, s_{3,2}, s_{3,3}$ Add specifications together:

 $x_1 + x_2 + x_3 + s_{1,1} + s_{2,1} + s_{2,2} = s_{1,1} + s_{2,1} + s_{2,2} + s_{3,1} + s_{3,2} + s_{3,3}$

High Level Specification:

► to enforce $x_1 + x_2 + x_3 \ge 2$ need to fix output bits $s_{3,1}, s_{3,2}, s_{3,3}$ Add specifications together:

 $x_1 + x_2 + x_3 =$ $s_{3,1} + s_{3,2} + s_{3,3}$

High Level Specification:

► to enforce $x_1 + x_2 + x_3 \ge 2$ need to fix output bits $s_{3,1}, s_{3,2}, s_{3,3}$ Add specifications together:

 $2 \le x_1 + x_2 + x_3 = s_{3,1} + s_{3,2} + s_{3,3}$

High Level Specification:

► to enforce $x_1 + x_2 + x_3 \ge 2$ need to fix output bits $s_{3,1}, s_{3,2}, s_{3,3}$ Add specifications together:

 $2 \le x_1 + x_2 + x_3 = s_{3,1} + s_{3,2} + s_{3,3}$

 \triangleright only used addition of constraints

High Level Specification:

▶ to enforce $x_1 + x_2 + x_3 \ge 2$ need to fix output bits s_3, s_3, s_3, s_3, s_4 Add specifications together:

 $2 \le x_1 + x_2 + x_3 = 53,1 + 53,2 + 53,3$

\triangleright only used addition of constraints

 \triangleright given specification, all clauses in encoding trivial to derive (via RUP)

High Level Specification:

▶ to enforce $x_1 + x_2 + x_3 \ge 2$ need to fix output bits s_3, s_3, s_3, s_3, s_4 Add specifications together:

 $2 \le x_1 + x_2 + x_3 =$ $s_{3,1} + s_{3,2} + s_{3,3}$

- \triangleright only used addition of constraints
- \triangleright given specification, all clauses in encoding trivial to derive (via RUP)
- \Rightarrow derivation can be expressed in VeriPB proof system

Stephan Gocht — stephan.gocht@cs.lth.se [Certifing PB to CNF](#page-0-0) 12/ 13

Conclusion

- \triangleright proof logging is well-established standard for SAT solving
- \triangleright so far, not applicable to stronger paradigms

Conclusion

- \triangleright proof logging is well-established standard for SAT solving
- \triangleright so far, not applicable to stronger paradigms

Our work: Proof logging translating 0-1 linear inequalities to CNF with VeriPB²

 \blacktriangleright allows proof logging for SAT based pseudo-Boolean solving

Conclusion

- \triangleright proof logging is well-established standard for SAT solving
- \triangleright so far, not applicable to stronger paradigms

Our work: Proof logging translating 0-1 linear inequalities to CNF with VeriPB²

 \triangleright allows proof logging for SAT based pseudo-Boolean solving

Future work:

- \triangleright provide efficient proof logging also for optimization (pseudo-Boolean optimization, MaxSAT, MIP)
- \triangleright express MaxSAT techniques (e.g. core guided search, MaxHS) in PB language
- \blacktriangleright new expressive proof formats and verifiers for competitions (why not with VeriPB ;-))

² <https://gitlab.com/MIAOresearch/VeriPB>

References I

References II

- [Cry] CryptoMiniSat. <https://github.com/msoos/cryptominisat/>.
- [EGMN20] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Justifying all differences using pseudo-boolean reasoning. In Proceedings of the 34th AAAI Conference on Artificial Intelligence. To appear, 2020.
- [GMM⁺20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser, and James Trimble.
	- Certifying solvers for clique and maximum common (connected) subgraph problems.

In Helmut Simonis, editor, Principles and Practice of Constraint Programming - 26th International Conference, CP 2020, Louvain-la-Neuve, Belgium, September 7-11, 2020, Proceedings, volume 12333 of Lecture Notes in Computer Science, pages 338–357. Springer, 2020.

- [GMN20] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph isomorphism meets cutting planes: Solving with certified solutions. In Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI '20), July 2020. To appear, 2020.
- [GN03] Evguenii I. Goldberg and Yakov Novikov. Verification of proofs of unsatisfiability for CNF formulas. In Design, Automation and Test in Europe Conference (DATE), pages 10886–10891. IEEE Computer Society, 2003.

References III

[GN21] Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using pseudo-Boolean proofs. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, 2021. To appear. [HKB17] Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere. Short proofs without new variables. In Leonardo de Moura, editor, Automated Deduction - CADE 26 - 26th International Conference

on Automated Deduction, Gothenburg, Sweden, August 6-11, 2017, Proceedings, volume 10395 of Lecture Notes in Computer Science, pages 130–147. Springer, 2017.

- [KFB20] Daniela Kaufmann, Mathias Fleury, and Armin Biere. The proof checkers pacheck and past \tilde{A} que for the practical algebraic calculus. In Ofer Strichman and Alexander Ivrii, editors, Formal Methods in Computer-Aided Design, FMCAD 2020., volume 1, pages 264–269. TU Vienna Academic Press, 2020.
- [Lin] Lingeling, Plingeling and Treengeling. <http://fmv.jku.at/lingeling/>.
- [PCH21] Matthieu Py, Mohamed Sami Cherif, and Djamal Habet. A proof builder for max-sat. In Chu-Min Li and Felip Manyà, editors, Theory and Applications of Satisfiability Testing – SAT 2021, pages 488–498, Cham, 2021. Springer International Publishing.

References IV

[RBK18] Daniela Ritirc, Armin Biere, and Manuel Kauers. A practical polynomial calculus for arithmetic circuit verification. In Anna M. Bigatti and Martin Brain, editors, 3rd International Workshop on Satisfiability Checking and Symbolic Computation (SC2'18), pages 61–76. CEUR-WS, 2018.

[Sin05] Carsten Sinz.

Towards an optimal CNF encoding of boolean cardinality constraints.

In Peter van Beek, editor, Principles and Practice of Constraint Programming - CP 2005, 11th International Conference, CP 2005, Sitges, Spain, October 1-5, 2005, Proceedings, volume 3709 of Lecture Notes in Computer Science, pages 827–831. Springer, 2005.

[WHH14] Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking and trimming using expressive clausal proofs. In Proceedings of the 17th International Conference on Theory and Applications of Satisfiability Testing (SAT '14), volume 8561 of Lecture Notes in Computer Science, pages 422–429. Springer, July 2014.