On Division Versus Saturation in Pseudo-Boolean Solving

Stephan Gocht, Jakob Nordström, Amir Yehudayoff

08.07.2019

▶ pseudo-Boolean (PB) constraints, i.e. $\{0,1\}$ -linear inequalities

• use $\bar{x} = (1 - x)$, allows us to have no negative coefficients

Example:

$$\begin{array}{c} h_1 + h_2 + \bar{x}_1 + \bar{x}_2 \geq 1 \\ \\ \bar{h}_1 + \bar{x}_2 + \bar{x}_3 \geq 2 \\ \\ \bar{h}_2 + \bar{x}_1 + \bar{x}_3 \geq 2 \\ \\ \\ x_1 + x_2 + x_3 \geq 2 \end{array}$$

Want to answer:

▶ pseudo-Boolean (PB) constraints, i.e. $\{0,1\}$ -linear inequalities

• use $\bar{x} = (1 - x)$, allows us to have no negative coefficients

Example:

$$\begin{array}{c} h_1 + h_2 + \bar{x}_1 + \bar{x}_2 \geq 1 \\ \\ \bar{h}_1 + \bar{x}_2 + \bar{x}_3 \geq 2 \\ \\ \bar{h}_2 + \bar{x}_1 + \bar{x}_3 \geq 2 \\ \\ \\ x_1 + x_2 + x_3 \geq 2 \end{array}$$

Want to answer:

Is there a satisfying solution? No 0-1 solution.

▶ pseudo-Boolean (PB) constraints, i.e. $\{0,1\}$ -linear inequalities

• use $\bar{x} = (1 - x)$, allows us to have no negative coefficients

Example:

$$\begin{array}{c} h_1 + h_2 + \bar{x}_1 + \bar{x}_2 \geq 1 \\ \\ \bar{h}_1 + \bar{x}_2 + \bar{x}_3 \geq 2 \\ \\ \bar{h}_2 + \bar{x}_1 + \bar{x}_3 \geq 2 \\ \\ \\ x_1 + x_2 + x_3 \geq 2 \end{array}$$

Want to answer:

- Is there a satisfying solution? No 0-1 solution.
- How hard is it to show that there is no solution?

Stephan Gocht

Division vs. Saturation

▶ pseudo-Boolean (PB) constraints, i.e. $\{0,1\}$ -linear inequalities

• use $\bar{x} = (1 - x)$, allows us to have no negative coefficients

Example:

$$\begin{array}{c} h_1 + h_2 + \bar{x}_1 + \bar{x}_2 \geq 1 \\ \\ \bar{h}_1 + \bar{x}_2 + \bar{x}_3 \geq 2 \\ \\ \bar{h}_2 + \bar{x}_1 + \bar{x}_3 \geq 2 \\ \\ \\ x_1 + x_2 + x_3 \geq 2 \end{array}$$

Want to answer:

- Is there a satisfying solution? No 0-1 solution.
- How hard is it to show that there is no solution? It depends...

Stephan Gocht

Division vs. Saturation

Solving Pseudo-Boolean Problems

- ▶ NP-hard \Rightarrow can't expect efficient solution in general
- there are multiple approaches for solving PB problems
- our work focuses on PB solvers, i.e., algorithms...
 - similar to conflict-driven clause learning (CDCL) SAT solvers
 - using PB constraints to analyse conflicts
 - in practice worse than known theoretic limitations
- goal: understand power of reasoning

Solving Pseudo-Boolean Problems

- ▶ NP-hard \Rightarrow can't expect efficient solution in general
- there are multiple approaches for solving PB problems
- our work focuses on PB solvers, i.e., algorithms...
 - similar to conflict-driven clause learning (CDCL) SAT solvers
 - using PB constraints to analyse conflicts
 - in practice worse than known theoretic limitations
- goal: understand power of reasoning

This work:

- study so called saturation rule and division rule
- as used in PB solvers
- show that they are incomparable

Cutting Planes in PB Solvers

Literal Axioms

$$\overline{x \ge 0}$$
 $\overline{\overline{x} \ge 0}$

Cutting Planes in PB Solvers

Literal Axioms

$$\overline{x \ge 0}$$
 $\overline{\overline{x} \ge 0}$

Generalized Resolution

(positive linear combination eliminating variable)

Cutting Planes in PB Solvers

Literal Axioms

$$\overline{x \ge 0}$$
 $\overline{\overline{x} \ge 0}$

Generalized Resolution

(positive linear combination eliminating variable)

$$\frac{h_1 + h_2 + \bar{x}_1 + \bar{x}_2 \ge 1}{h_2 + 2\bar{x}_1 + \bar{x}_2 + \bar{x}_3 \ge 2}$$

Cutting Planes in PB Solvers — Boolean Rule

Division (divide and round up coefficients and right hand side) used in [EN18]

$$\frac{x_1 + 2x_2 + 2x_3 \ge 3}{x_1 + x_2 + x_3 \ge 2}$$
 Divide by 2

Cutting Planes in PB Solvers — Boolean Rule

Division (divide and round up coefficients and right hand side) used in [EN18]

$$\frac{x_1 + 2x_2 + 2x_3 \ge 3}{x_1 + x_2 + x_3 \ge 2}$$
 Divide by 2

or

Saturation (reduce to min of coefficient and right hand side) used in [DG02, CK05, SS06, LP10]

$$\frac{6x + 3y + z_1 + z_2 \ge 3}{3x + 3y + z_1 + z_2 \ge 3}$$

Cutting Planes in PB Solvers — Boolean Rule

Division (divide and round up coefficients and right hand side) used in [EN18]

$$\frac{x_1 + 2x_2 + 2x_3 \ge 3}{x_1 + x_2 + x_3 \ge 2}$$
 Divide by 2

or

Saturation (reduce to min of coefficient and right hand side) used in [DG02, CK05, SS06, LP10]

$$\frac{6x + 3y + z_1 + z_2 \ge 3}{3x + 3y + z_1 + z_2 \ge 3}$$

How do these rules compare?

- Is one of them strictly better?
- Or are they incomparable?

Stephan Gocht

$\frac{h_1 + h_2 + \bar{x}_1 + \bar{x}_2 \ge 1}{h_2 + 2\bar{x}_1 + \bar{x}_2 + \bar{x}_3 \ge 2} \frac{h_1 + \bar{x}_1 + \bar{x}_3 \ge 2}{h_2 + \bar{x}_2 + \bar{x}_3 \ge 2}$

 $x_1 + x_2 + x_3 \ge 2$

$\begin{array}{c|c} \underline{h_1 + h_2 + \bar{x}_1 + \bar{x}_2 \ge 1} & \overline{h_1 + \bar{x}_1 + \bar{x}_3 \ge 2} \\ \hline \underline{h_2 + 2 \bar{x}_1 + \bar{x}_2 + \bar{x}_3 \ge 2} & \overline{h_2 + \bar{x}_2 + \bar{x}_3 \ge 2} \\ \hline \underline{2 \bar{x}_1 + 2 \bar{x}_2 + 2 \bar{x}_3 \ge 3} \\ \hline \underline{2 \bar{x}_1 + \bar{x}_2 + \bar{x}_3 \ge 2} & x_1 + x_2 + x_3 \ge 2 \end{array}$

Is division stronger than saturation?

- generalized resolution can derive (4)
- division can derive (5)
- saturation does not change (4)

Is division stronger than saturation?

$h_1 + h_2 + \bar{x}_1 + \bar{x}$	≥ 1	(1)
$\overline{h}_1 + \overline{x}$	$\bar{x}_2 + \bar{x}_3 \ge 2$	(2)
$\bar{h}_2 + \bar{x}_1 +$	$\bar{x}_3 \ge 2$	(3)
$2\bar{x}_1 + 2\bar{x}_2 + 2\bar{x}_3 \ge 3$		(4)
$\bar{x}_1 + \bar{x}$	$\bar{x}_{2} + \bar{x}_{3} \ge 2$	(5)

there are formulas that...

- contain constraints similar to (1)-(3)
- are unsatisfiable
- showing unsatisfiability using generalized resolution and...

saturation requires an exponential number of steps
 division can be done in a linear number of steps

Stephan Gocht

Division vs. Saturation

Is division stronger than saturation? As in [VEGC⁺18].

$$h_1 + h_2 + \bar{x}_1 + \bar{x}_2 \ge 1$$
 (1)

$$\bar{h}_1$$
 $\bar{x}_2 + \bar{x}_3 \ge 1$ (2)

$$/ \bar{h}_{2} + \bar{x}_{1} + \bar{x}_{3} \ge 1$$
(3)

$$2\bar{x}_1 + 2\bar{x}_2 + 2\bar{x}_3 \ge 3 \tag{4}$$

$$\bar{x}_1 + \bar{x}_2 + \bar{x}_3 \ge 2$$
 (5)

there are formulas that...

- contain constraints similar to (1)-(3)
- are unsatisfiable arbitrary positive linear combination
- showing unsatisfiability using generalized resolution and...

saturation requires an exponential number of steps

division can be done in a linear number of steps

Stephan Gocht

Division vs. Saturation

Difference to [VEGC⁺18]

▶ [VEGC⁺18] does not apply to generalized resolution

 problem: PB solver do use generalized resolution
 ⇒ used formula [MN14] is always hard for PB solver (no matter if saturation or division is used)

Difference to [VEGC⁺18]

▶ [VEGC⁺18] does not apply to generalized resolution

 problem: PB solver do use generalized resolution
 ⇒ used formula [MN14] is always hard for PB solver (no matter if saturation or division is used)

 we modify formula to allow generalized resolution (via helper variables h₁, h₂,...)

we show that generalized resolution and...

- saturation still requires an exponential number of steps
- division can now derive UNSAT in a linear number of steps

Practical Experiments: Division Stronger Than Saturation

saturation based solvers are guaranteed to run slow

can division based solvers show unsatisfiability fast?

Practical Experiments: Division Stronger Than Saturation

- saturation based solvers are guaranteed to run slow
- can division based solvers show unsatisfiability fast?
 - yes, but sensitive to other settings

Is saturation stronger than division?

$$Rx + Ry + \sum_{i=1}^{R} z_i \geq R \qquad (6)$$

$$\frac{Rx + R\bar{y} + \sum_{i=1}^{2R} z_i \geq R}{2Rx + \sum_{i=1}^{2R} z_i \geq R} \qquad (7)$$

$$\frac{2Rx + \sum_{i=1}^{2R} z_i \geq R}{Rx + \sum_{i=1}^{2R} z_i \geq R} \qquad (8)$$

generalized resolution can derive (8)
 saturation can derive (9) in one step

Stephan Gocht

Is saturation stronger than division?

$$Rx + Ry + \sum_{i=1}^{R} z_i \geq R \qquad (6)$$

$$\frac{Rx + R\overline{y} + \sum_{i=1}^{2R} z_i \geq R}{2Rx + \sum_{i=1}^{2R} z_i \geq R} \qquad (7)$$

$$\frac{2Rx + \sum_{i=1}^{2R} z_i \geq R}{Rx + \sum_{i=1}^{2R} z_i \geq R} \qquad (8)$$

- generalized resolution can derive (8)
- saturation can derive (9) in one step
- division can derive (9), but requires at least \sqrt{R} steps

Stephan Gocht

Division vs. Saturation

Proof Sketch: Define Suitable Potential Function

$$\mathcal{P}(ax + by + b'\overline{y} + \sum c_i z_i \ge A) := \ln ((2a + b + b')/A)$$

Examples:

$$\mathcal{P}(C_{\text{start}}) := \mathcal{P}(Rx + Ry + \sum_{i=1}^{R} z_i \ge R) = \ln(3R/R) = \ln(3)$$

$$\mathcal{P}(C_{\text{end}}) := \mathcal{P}(Rx + \sum_{i=1}^{2R} z_i \ge R) = \ln(2R/R) = \ln(2)$$

Proof Sketch: Define Suitable Potential Function

$$\mathcal{P}(ax + by + b'\bar{y} + \sum c_i z_i \geq A) := \ln\left((2a + b + b')/A\right)$$

Examples:

$$\mathcal{P}(C_{\text{start}}) := \mathcal{P}(Rx + Ry + \sum_{i=1}^{R} z_i \ge R) = \ln(3R/R) = \ln(3)$$
$$\mathcal{P}(C_{\text{end}}) := \mathcal{P}(Rx + \sum_{i=1}^{2R} z_i \ge R) = \ln(2R/R) = \ln(2)$$

Important properties:

• needs to change:
$$\mathcal{P}(C_{start}) - \mathcal{P}(C_{end}) \ge 1/6$$

• doesn't change with generalized resolution: $\mathcal{P}(C_1 \oplus C_2) \ge \min{\{\mathcal{P}(C_1), \mathcal{P}(C_2)\}}$

• division only changes
$$\mathcal{P}$$
 by a small amount:
 $\mathcal{P}(C/k) \geq \mathcal{P}(C) - 1/\sqrt{R}$

Stephan Gocht

Division vs. Saturation

11/12

Conclusion

- division can be provably stronger than saturation
- saturation can be provably stronger than division (for deriving specific constraint)

Future Research Directions

- division rule and saturation rule seem incomparable
 implement adaptive choice between division and saturation
- practical results sensitive to other settings
 ⇒ better understanding of implementation choices desirable
- ► for some problems mixed integer programming is more efficient ⇒ try to use the best from both worlds

Conclusion

- division can be provably stronger than saturation
- saturation can be provably stronger than division (for deriving specific constraint)

Future Research Directions

- division rule and saturation rule seem incomparable
 implement adaptive choice between division and saturation
- practical results sensitive to other settings
 ⇒ better understanding of implementation choices desirable
- ► for some problems mixed integer programming is more efficient ⇒ try to use the best from both worlds

Thank you for your attention!

Stephan Gocht

References I

[CK05]	Donald Chai and Andreas Kuehlmann. A fast pseudo-boolean constraint solver. IEEE Trans. on CAD of Integrated Circuits and Systems, 24(3):305–317, 2005.
[DG02]	Heidi E. Dixon and Matthew L. Ginsberg. Inference methods for a pseudo-Boolean satisfiability solver. In Proceedings of the 18th National Conference on Artificial Intelligence (AAAI '02), pages 635–640, July 2002.
[EN18]	Jan Elffers and Jakob Nordström. Divide and conquer: Towards faster pseudo-Boolean solving. In <u>Proceedings of the 27th International Joint Conference on Artificial</u> Intelligence (IJCAI '18), pages 1291–1299, July 2018.
[LP10]	Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2. Journal on Satisfiability, Boolean Modeling and Computation, 7:59–64, 2010.
[MN14]	Mladen Mikša and Jakob Nordström. Long proofs of (seemingly) simple formulas. In Proceedings of the 17th International Conference on Theory and Applications of Satisfiability Testing (SAT '14), volume 8561 of Lecture Notes in Computer Science, pages 121–137. Springer, July 2014.

References II

[SS06] Hossein M. Sheini and Karem A. Sakallah. Pueblo: A hybrid pseudo-Boolean SAT solver. Journal on Satisfiability, Boolean Modeling and Computation, 2(1-4):165–189, March 2006. Preliminary version in DATE '05.

[VEGC⁺18] Marc Vinyals, Jan Elffers, Jesús Giráldez-Cru, Stephan Gocht, and Jakob Nordström.

In between resolution and cutting planes: a study of proof systems for pseudo-boolean sat solving.

In International Conference on Theory and Applications of Satisfiability Testing, pages 292–310. Springer, 2018.