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Abstract

The B2B Scheduling Optimization Problem (B2BSOP) consists in finding the schedule of a set of

meetings between persons minimizing the waiting time periods between meetings of the participants.

Recent results have shown that a SAT-based approach is the-state-of-the-art. One of the interesting

features of such approach is the use of implied constraints. In this work, we provide an experimental

setting to study the effectiveness of using those implied constraints. Since there exists a reduced number

of real-world B2B instances, we propose a random B2B instances generator, which reproduces certain

features of these known to date real-world instances. We show the usefulness of some implied constraints

depending on the characteristics of the problem, and the benefits of combining them. Finally, we give

some insights on the exploitation of these implied constraints by the solver.

1 Introduction

Business-to-business (B2B) events consist in meetings between people with similar interests.
They are typically held in business networking events. The B2B scheduling problem is the
problem of finding a feasible schedule for a set of requested meetings between participants,
subject to participant availability and accommodation capacity. To the best of our knowledge,
there are few works dealing with this problem. In [6], authors propose a system for computing
such schedules in several fairs.

The B2B scheduling optimization problem (B2BSOP) considered in this work is introduced
in [4]. It consists in finding a feasible B2B schedule that minimizes the number of breaks in
participants’ schedule (or idle time periods), cumulatively over all participants. Side constraints
can be added to ensure fairness among participants, e.g., restricting the maximum difference in
the number of breaks among all participants’ schedules. A further refinement could consist in
(additionally or alternatively) minimizing the duration of the breaks.

The B2BSOP has been successfully addressed on real-world instances by means of relatively
straightforward CP and Pseudo-Boolean formulations [4], and further investigated in [10] with
specialized CP and MIP formulations and in [5] with partial MaxSAT specialized encodings.
In a partial MaxSAT formula [8], some clauses are marked as hard whilst others are marked as
soft, and the goal is to find an assignment to the variables that satisfies all hard clauses and
falsifies the minimum number of soft clauses. In the encoding from [5], which we will use in
this paper, the falsification of a soft clause will represent the existence of an idle time period

∗This work is partially funded by the MINECO/FEDER UE project LoCoS (TIN2015-66293-R), the UdG
project MPCUdG2016/055, the CSIC project 201450E045, and MINECO/FEDER UE project RASO (TIN2015-
71799-C2-1-P).
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for some participant. This MaxSAT encoding clearly dominates the other formulations, and
the use of implied constraints appears to be beneficial.

There already exist some works in the literature showing the benefits of using implied
constraints or making redundant encodings in SAT, see for instance [7, 2, 3]. However, the
lack of varied real-world B2B instances makes difficult to hold this claim for the problem at
hand. In this paper, we face this problem by means of random generators. The development of
random problems generators sharing the majority of real-world instance features was already
stated in [11] as one of the most important challenges for the next few years. The main goal
of such generators is two-sided. On one hand, these generators allow us to augment the set
of problems since the random generated instances share the main characteristics of the known
problems. On the other hand, they allow us to create instances of any desired size. This is
interesting for testing and debugging purposes, since we can create families of instances easier
to solve, and hence any technique evaluation can be performed faster.

In this work, we propose a generator of random B2B instances. It is parameterized in several
ways, in order to reproduce certain characteristics of B2B real-world problems in a customized
fashion. This allows us to get some insights on the strengths and weaknesses of those implied
constraints based on the characteristics of the problem. Namely, we show the benefits of using
implied constraints with respect to the density and the shape of the problem. By density we
mean the ratio between the number of meetings and the accommodation capacity. By shape
we mean the configuration of the accommodation capacity (i.e., ratio between time slots and
locations). Finally, we illustrate how the use of implied constraints modifies the branching
variable selection of the solver, and we conjecture its possible relation to the successful solver
performance.

2 Background

Here we precisely reproduce the definition of the problem at hand used in [4].

Definition 1 (B2BSOP-h). Given a set of participants P, a list of time slots T , a set of
available locations L and a set of meetings M ⊂ P × P between pairs of participants to be
scheduled, where participants may have forbidden meeting time slots and meetings may have
morning or afternoon celebration requirements, the B2B Scheduling Optimization Problem with
homogeneity h consists in finding a total mapping fromM to T ×L, minimizing the total number
of idle time periods cumulatively over all participants, and such that:

• Each participant has at most one meeting scheduled in each time slot.

• No meeting is scheduled in a forbidden time slot for any of its participants.

• At most one meeting is scheduled in a given time slot and location.

• Each meeting having a morning or afternoon celebration requirement is scheduled in a time
slot of the appropriate interval.

• The difference between the number of idle time periods among all participants is at most
h, where by an idle time period we refer to a group of consecutive idle time slots between
two consecutive meetings involving the same participant.

In the MaxSAT encoding presented in [5], among others, there are |M|·|T | Boolean variables
schedulei,j representing if meeting i is held in time slot j, and |P| · |T | Boolean variables
usedSlotp,j representing if participant p has a meeting scheduled in time slot j.
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For readability, we also reproduce a simplified1 version of this MaxSAT encoding.
Parameters. Each instance is defined by the following parameters:

• nMeetings: number of meetings.

• nTimeSlots: number of available time slots.

• nTables: number of available locations.

• nParticipants: number of participants.

• meetings, function from {1, . . . ,nParticipants} to 2{1,...,nMeetings}: set of meetings involving
each participant.

• forbidden, function from {1, . . . ,nParticipants} to 2{1,...,nTimeSlots}: set of forbidden time
slots for each participant.

Variables. We define the following propositional variables:

• schedulei,j : meeting i is held in time slot j.

• usedSlotp,j : participant p has a meeting scheduled in time slot j.

• fromSlotp,j : participant p has a meeting scheduled at, or before, time slot j.

• endHolep,j : participant p has an idle time period finishing at time slot j.

We also use some auxiliary variables that will be introduced when needed.
In what follows, we use several Boolean global constraints with the following meaning.

exactly(k, S) states that exactly k variables in S are set to true, atMost(k, S) states that at
most k variables in S are set to true, and finally, sortingNetwork(S, sl) states that sl is the
sorted list of Boolean variables of S.

Constraints. All constraints are hard if not explicitly defined as soft constraints. To help
readability we defineM = {1, . . . ,nMeetings}, T = {1, . . . ,nTimeSlots}, P = {1, . . . ,nParticipants}.

At most one meeting involving the same participant is scheduled in each time slot.

atMost(1, {schedulei,j | i ∈ meetings(p)}) ∀p ∈ P, j ∈ T

No meeting is scheduled in a forbidden time slot for any of its participants.∧
i∈meetings(p), j∈forbidden(p)

¬schedulei,j ∀p ∈ P

Each meeting is scheduled in exactly one time slot.

exactly(1, {schedulei,j | j ∈ T }) ∀i ∈M

At most one meeting is scheduled in a given time slot and location.

atMost(nTables, {schedulei,j | i ∈M}) ∀j ∈ T

In order to be able to minimize the number of idle time periods we introduce channeling
constraints between the variables schedule, usedSlot and fromSlot .

If a meeting is scheduled in a certain time slot, then that time slot is used by both meeting
participants.

schedulei,j → (usedSlotp1
i ,j
∧ usedSlotp2

i ,j
) ∀i ∈M, j ∈ T

1For instance, we do not show the encodings of morning/afternoon requirements. The complete and detailed
encoding can be found in [5].
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where p1i and p2i are the participants of meeting i.
In the reverse direction, if a time slot is used by some participant, then one of the meetings

of that participant is scheduled in that time slot.

usedSlotp,j →
∨

i∈meetings(p)

schedulei,j ∀p ∈ P, j ∈ T

For each participant p and time slot j, fromSlotp,j is true if and only if participant p has
had a meeting at or before time slot j.

¬usedSlotp,1 → ¬fromSlotp,1 ∀p ∈ P

(¬fromSlotp,j−1 ∧ ¬usedSlotp,j)→ ¬fromSlotp,j

∀p ∈ P, j ∈ T \ {1}

usedSlotp,j → fromSlotp,j ∀p ∈ P, j ∈ T
fromSlotp,j−1 → fromSlotp,j ∀p ∈ P, j ∈ T \ {1}

Optimization. Minimization of the number of idle time periods is achieved by means of
soft constraints.

An idle time period can be identified when a participant has no meeting in a certain time
slot, has a meeting in the next time slot, and has had a meeting before. We reify this situation
with the endHole variables.

endHolep,j is true if and only if participant p has an idle time period finishing at time slot
j.

endHolep,j ↔
(
¬usedSlotp,j ∧ fromSlotp,j ∧ usedSlotp,j+1

)
∀p ∈ P, j ∈ T \ {nTimeSlots}

sortedHolep,1, . . . , sortedHolep,b(nTimeSlots−1)/2c are the unary representation of the number
of idle time periods of each participant p.2

sortingNetwork([endHolep,j | j ∈ T ],

[sortedHolep,j | j ∈ T ]) ∀p ∈ P

[Soft Constraint] A participant does not have idle time periods.

¬sortedHolep,j ∀p ∈ P, j ∈ 1..b(nTimeSlots − 1)/2c

Homogeneity. We find the maximum and minimum number of idle time periods among
all participants, and enforce homogeneity by bounding their difference.

(An approximation to) The unary representation of the maximum and minimum number
of idle time periods among all participants are respectively max 1, . . . ,max b(nTimeSlots−1)/2c and
min1, . . . ,minb(nTimeSlots−1)/2c.

sortedHolep,j → max j ∀p ∈ P, j ∈ 1..b(nTimeSlots − 1)/2c
¬sortedHolep,j → ¬minj ∀p ∈ P, j ∈ 1..b(nTimeSlots − 1)/2c

2Notice that the number of possible idle time periods of each participant is strictly smaller than the half of
time slots.
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The difference between the maximum and minimum number of idle time periods can be at
most h.

dif j ↔ minj XOR max j ∀j ∈ 1..b(nTimeSlots − 1)/2c
atMost(h, {dif j | j ∈ 1..b(nTimeSlots − 1)/2c})

Implied Constraints: From the constraints defined for the problem, the following two
sets of implied constraints on usedSlot variables are identified:

1) The number of meetings of a participant p as derived from usedSlotp,j variables must
match the total number of meetings of p.

exactly(|meetings(p)|, {usedSlotp,j | j ∈ T }) ∀p ∈ P (1)

2) The number of participants having a meeting in a given time slot is bounded by twice the
number of available locations.

atMost(2× nTables, {usedSlotp,j | p ∈ P}) ∀j ∈ T (2)

These constraints can be encoded in several ways into SAT, being cardinality networks [1]
the most promising approach on this problem, according to the experiments in [5]. Moreover,
as shown by the experiments, using those implied constraints is in general beneficial. However,
it is difficult to extract conclusions from those experiments, due to the limited number and
variety of B2B instances.

3 A Random B2B Instances Generator

In this section we present a model of generation of random B2B problems. To model these
problems, we consider a number of participants P = |P| and a number of meetings M = |M|.
The key question is how these M meetings are distributed among these P participants. In
this distribution, we need to impose a restriction to ensure the feasibility of the instance: the
number of meetings requested by a participant cannot be greater than the number of time slots
T = |T |. Also notice that this distribution is independent on the number of locations L = |L|.
For simplicity, we do not consider either forbidden or morning/afternoon time slots.

The set of available real-world B2B instances [5]3 contains 20 instances: 5 of them come
from real data, and the remaining 15 are crafted modifications from the real ones. As we
cannot draw general conclusions about probability distributions from this reduced set of real
instances, we present a simple model to generate random B2B instances. This model, called
regular model,4 is based on a probability U that a participant requests a meeting with another.

Definition 2 (Regular Model). Let P be a positive number of participants, and U a real value
in [0, 1]. The probability that a participant pi requests a meeting with another participant pj is
exactly U , where 1 ≤ i, j ≤ P and i 6= j.

Theorem 1. In the regular model for random B2B problems, the number of meetings requested
per participant follows a binomial distribution B(n, p) with parameters n = P − 1 and p = U .

Proof. Each participant can request meetings with the remaining P − 1 participants. This
means that for each of them, there is a sequence of P − 1 yes/no independent experiments,
each of which yields success with probability U . This is exactly the definition of a binomial
distribution B(n, p) with parameters n = P − 1 and p = U .

3Instances available at http://imae.udg.edu/recerca/lap/simply/
4In case of acceptance, this generator will be publicly available.

5

http://imae.udg.edu/recerca/lap/simply/


A Study on Implied Constraints

in a MaxSAT Approach to B2B Problems Bofill, Garcia, Giráldez-Cru and Villaret

Corollary 1. In the regular model, the expected number of meetings requested by each partic-
ipant is (P − 1)U .

Proof. In a binomial distribution B(n, p), the mean is np.

Note that our model allows us to generate instances in which the number of meetings
requested per participant is close to the maximum. The regular model is not parametric on the
number of time slots T . Thus, when (P−1)U � T , there exists (with high probability) a number
of participants requesting more meetings than available time slots, and hence it is not possible
to schedule all of them. To avoid trivially unfeasible instances, we perform a preprocessing
step limiting the maximum number of requests of a participant to T .5 This way, the resulting
problem contains many participants requesting T meetings, i.e., many observations close to the
maximum. In our experience, we have found this kind of participant is very frequent.

In what follows, we use this model to generate random families of B2B instances, and we
study the performance of the solving process on the use of the implied constraints. This study
aims to check whether it is beneficial to use them or not, and in which situations is more useful
to use one or another. In particular, we focus our study on two features of the problem: the
density and the shape.

Definition 3 (Density of a B2B instance). Given a positive number of meetings M , time slots T
and locations L, the density d of a B2B instance is the relation between the number of meetings
M and the accommodation capacity T · L.

d =
M

T · L
(3)

Notice that if the density of a B2B instance is greater than one, the instance is necessarily
unfeasible. The opposite is not true. Let us consider a B2B instance with 3 participants, 3
meetings between the 3 combinations of them, 2 time slots, and 2 locations. The density of
this instance is d = 3/4. However, it is easy to see that this instance is unfeasible. In fact,
increasing the number of locations, i.e., decreasing the density, does not modify its feasibility.
Therefore, unfeasible instances with density smaller than one exist.

Definition 4 (Shape of a B2B instance). Given the accommodation capacity T ·L, the shape s
of a B2B instance is defined as the relation between the number of time slots T and the number
of locations L.

s =
T

L
(4)

Finally, we remark that this model does not represent all features of real-world instances.
For instance, using this model we cannot generate a large number of participants requesting
a number of meetings far from the mean. In particular, it may be possible the existence of
passive participants in some B2B events. These participants are characterized by requesting no
meetings (i.e, they attend the event because other participants request meetings with them). In
this case, a polynomial decreasing distribution, as a power-law distribution, may model these
instances more adequately. However, our model seems adequate to model B2B instances similar
to the known real-world ones.

5A trivially unfeasible instance contains participants requesting more meetings than available time slots.
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4 Experimental Evaluation

In this section, we evaluate the effect on the solver performance of the use of implied constraints.
To do so, we first generate some families of random B2B instances, and we solve them with and
without using implied constraints. The goal of these experiments is to identify those cases for
which the use of some implied constraint is beneficial. Then, we validate these observations of
random B2B instances in real-world problems. Finally, we conjecture the reasons of the success
of using implied constraints based on some observations from the solver.

4.1 Experimental setup

In our experiments, we generate families of random B2B benchmarks, containing each of them
20 instances per configuration. We use 16 different configurations, resulting in a total of 320
different random instances for our experimentation. All experiments are run with a timeout of
2 hours (7200 seconds). As in [5], we use a value for homogeneity h = 2. We solve each instance
without using implied constraints, and with using implied constraint 1 (Eq. 1), 2 (Eq. 2) and
both. In the plots, these methods are named as no-imp, imp1, imp2 and imp12 respectively.
We use Open-WBO [9] as MaxSAT solver. This solver has been ranked as one of the best
non-portfolio solver in the industrial partial MaxSAT tracks of the MaxSAT Evaluations 2014
and 2015.6 Random B2B instances were solved in a cluster of nodes with 32GB of RAM and
2 processors Intel(R) Xeon(R) @ 2.27 GHz, limiting all experiments to a single core and to a
maximum of 4GB of RAM. Real-world B2B problems were solved in a cluster of nodes with
8GB of RAM and 1 processor Intel(R) Xeon(R) @ 3.1 GHz.

4.2 Random B2B Instances

In our experimentation, we use an estimation of the number of meetings M , since this number
is unknown a priori. From Corollary 1, we know than the expected number of requests per
participant is (P −1)U . Therefore, the expected total number of requests is E[R] = P (P −1)U .
Notice that we distinguish between requests and meetings, since a meeting can be produced by
a single request or by two (both participants request a meeting with each other). Therefore,
the expected number of meetings is bounded by:

E[M ] ≤ E[R] = P (P − 1)U

However, when the probability U is small, the number of requests is also small, and hence
the number of meetings can be approximated as E[M ] ≈ E[R].7 Finally, we approximate M
using its expected value, i.e., M ≈ E[M ]. In what follows, we use these approximations. In our
experiments, we set the number of participants P = 40. We consider this number big enough
to reproduce the hardness of some real-world problems. Notice that the number of participants
in some real instances ranges between 42 and 47 (see the tic family in [5]). Also, we use a
fixed probability U = 0.1. With the previous approximation, and using P = 40 and U = 0.1,
we obtain E[M ] = 156, which is a reasonable number of meeting w.r.t. real instances (whose
number of meetings ranges between 125 and 184 for the previously mentioned family).

Based on the definitions of density and shape, we can easily create families of random B2B
problems using the regular model and just modifying the input values of T and L. The natural

6http://www.maxsat.udl.cat/.
7The expected number of meetings is exactly E[M ] =

(P
2

)
(2U(1−U)+UU) =

P (P−1)(2U−U2)
2

, which is the
probability that one or both participants of a meeting request it, among the total pairs of participants. When
U is small, we can approximate it as E[M ] ≈ P (P − 1)U .
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Figure 1: PAR10 (in seconds) of solving some random B2B families of instances, with and
without using implied constraints, varying their density d. Instances are generated using the
regular model with P = 40, U = 0.1, and a fixed shape s = 1 (i.e., T = L), hence d = M/TL ≈
P (P − 1)Us/T 2.

question now is to detect those cases in which the use of some implied constraint is more
beneficial than any other encoding. To find those cases, we generate families of random B2B
instances varying the density and the shape.

In our analysis, we represent the Penalized Average Runtime 10 (PAR10), which is the
average of the runtime used to solve the set of instances, assigning to those instances with
timeout (i.e., 7200 seconds) a runtime equal to 10 times the value of the timeout (i.e., 72000
seconds). For each family, we represent a box-and-whisker plot, which represents the maximum,
minimum, median, and quartiles 1 and 3 of the runtimes of the family.

In Figure 1, we represent the runtime of solving some families of random B2B instances
varying the density d, with a fixed shape s = 1 (i.e., T = L, and P = 40, U = 0.1). Recall that
we approximate the density d as follows:

d =
M

T · L
≈ P (P − 1)U

T · T/s

Notice that when P , U and s are fixed, the variations in the density are equivalent to variations
in T (or L). First, we observe that denser the instance, harder to solve. This happens for
all the 4 encodings. For instance, when d = 1.29 (T = 11) no instance is solved for none of
the encodings, but they all solve all instances when d = 0.54 (T = 17) in approximately less
than 100 seconds. Second, we observe that, in general, using no implied constraints (no-imp)
is slower than using one implied constraint (either imp1 or imp2 ), and using one is slower than
using both (imp12 ). This was already suggested in [5]. Third, we observe that, interestingly,
imp2 shows a good performance w.r.t. no-imp when the density is high. For instance, when
d = 1.08 (T = 12), imp2 solves a total of 8 instances (40% of the family) while no-imp (and
also imp1 ) only solves 2 of them (10%). On the contrary, when the density is small, it is imp1
which shows a better performance w.r.t. no-imp. For instance, when d = 0.54 (T = 17), the
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Figure 2: PAR10 (in seconds) of solving some random B2B families of instances, with and
without using implied constraints, varying their shape s. Instances are generated using the
regular model with P = 40, U = 0.1, and a fixed density d ≈ 1 (i.e., T · L = E[R]), hence
s = T/L ≈ T 2/P (P − 1)U .

maximum runtime of imp1 is 10.69 seconds, while no-imp spends a maximum of 54.75 seconds
(the maximum of imp2 is 111.85 seconds). We summarize these results in Observation 1.

Observation 1. Using the implied constraint 1 ( imp1) seems to be more interesting when the
density is small. On the contrary, the implied constraint 2 ( imp2) seems to be more relevant
when the density is high. Overall, using both implied constraints ( imp12) is always beneficial.

In Figure 2, we represent the runtime of solving families of random B2B instances varying
the shape s. Again, we set P = 40 and U = 0.1. We want to fix a density d. Originally, we used

E[R] to calculate T and L as follows: T = L =
⌈√

E[R]
⌉
. Therefore, for this P and U , T and

L originally had a value of 13. In order to fix a density, the product of T and L should also be
similar8 to that number (169). Notice that this way, some combinations of (T, L) does not exist
(e.g., T = 16). Therefore, the density d is close and slightly smaller than 1, and approximately
the same for all families. Hence, the variations in the shape are also equivalent to variations in
T (when P , U and d are fixed). In this experiment we identify several phenomena. First, the
higher the value of the shape s (i.e., more time slots w.r.t. locations), the harder to solve the
instance. Notice that for a fixed density, when the shape is small, the number of time slots is
also small and the number of locations is high. Second, again no-imp is worse than imp1 and
imp2, and these two are worse than imp12, as suggested in [5]. Third, the benefits of using one
of the implied constraints depend on the shape. When the shape is small, imp1 is faster than
imp2. For instance, when s = 0.52 (T = 9), imp1 spends a total of 7.95 seconds in solving
all instances of the family, while imp2 spends 20.23 seconds. On the contrary, when the shape
is high, imp2 is more beneficial. For instance, when s = 1.44 (T = 15) imp1 only solves 2
instances (10% of the family) while imp2 solves 14 (70%). Finally, imp12 is the best encoding,

8Notice that the T and L are integers, so an equal size may not be possible.
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Figure 3: PAR10 (in seconds) of solving some real-world B2B instances, with and without using
implied constraints, varying their density d, and with a fixed shape, i.e., ∆T = ∆L.

and harder the instance, better its performance w.r.t. the other 3 encodings. For instance,
when s = 1.85 (T = 17), no-imp, imp1 and imp2 solve only 1 instance, while imp12 solves 9.
We summarize these results in Observation 2.

Observation 2. Using the implied constraint 1 ( imp1) seems to be more interesting when the
shape is small. On the contrary, the implied constraint 2 ( imp2) seems to be more relevant
when the shape is high. Overall, using both implied constraints ( imp12) is always beneficial.

The intuition behind these observations may be connected to the relation between the
implied constraints and the number of locations and time slots. In particular, the first implied
constraint depends on the number of meetings of each participant, and this number is bounded
by the number of time slots. The second implied constraint depends on the number of locations.
Notice that since we are using cardinality networks to encode these constraints, the smaller the
number of time slots is, the better for the first implied constraint encoding, and similarly with
the number of locations and the second implied constraint.

4.3 Real-world B2B Instances

We want to check if the previous observations are also valid in real-world B2B instances. Notice
that in the case of real-world instances, the combinations of T and L are reduced (in order to
obtain feasible, non-trivial instances). Therefore, the number of perturbed problems (from the
original ones) is smaller.

In Figure 3 we represent the runtime of solving some real-world B2B instances varying the
density d, with a fixed shape s. To fix the shape of these problems, we use the original numbers
of time slots and locations, and we increase both of them in the same proportion. Based on
Observation 1, we predicted that imp1 is more beneficial with small densities, imp2 for a high
density, and imp12 shows a good performance in all cases. From the results, we observe that
this observation is also valid in our set of real-world instances. For instance, when ∆d = −40%,
the fastest encoding in solving all instances is imp1. Also, imp2 solves all instances when
∆d = 0% (in this case, there are several timeouts for no-imp and imp1 ). Finally, imp12 is, in
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Figure 4: PAR10 (in seconds) of solving some real-world B2B instances, with and without using
implied constraints, varying their shape s, and with a fixed density, i.e., fixed T · L.

∆d = −40% ∆d = −20% ∆d = 0%
solved PAR1 PAR10 solved PAR1 PAR10 solved PAR1 PAR10

no-imp 20 148.49 148.49 20 340.38 340.38 16 1835.82 14797.82
imp1 20 3.54 3.54 20 3.48 3.48 18 735.39 7216.33
imp2 20 470.21 470.21 20 190.59 190.59 20 746.34 746.34
imp12 20 7.13 7.13 20 6.12 6.12 20 148.54 148.54

Table 1: Statistics of solving some real-world B2B instances, varying their density d, for a fixed
shape s (with ∆T = ∆L).

general, one of the best choices. This last claim is not clear from the plot. In Table 1, we report
some statistics of this experiment. We use the Penalized Average Runtimes PAR1 and PAR10.
Notice that the penalization in PAR1 is small, thus it is useful to compare the runtime of
solving families where the majority of instances were solved. On the other hand, using PAR10
specially penalizes those timeouts, and thus it is useful when many instances were not solved.
From these results, we observe that imp12 is the fastest method in solving hard instances (see
∆d = 0%), but it is also a good choice when the instances are easy (see ∆d = −40%). In
this last case, the differences between imp1 (the fastest method) and imp12 are very small.
Therefore, this observation also seems to be valid in our benchmarks.

In Figure 4 we represent the runtime of solving some real-world B2B instances varying the
shape s, with a fixed density d. To do so, we increase/decrease T and L in the same proportion.9

The prediction from Observation 2 is that imp1 seems to be more useful than imp2 for small
shapes, and vice-versa, while imp12 is always beneficial. This claim is not totally observed
from the plot, due to the number of timeouts. In Table 2, we report some statistical results.
In this case, we consider more appropriate to use PAR1 in the cases of a reduced number of
timeouts. We observe that PAR1 of imp1 is smaller than PAR1 of imp2 for small values of ∆s
(see ∆s = 0%). However, as ∆T increases, imp2 is faster than imp1. Finally, we can observe

9For distinct values of T and L, increasing/decreasing them in the same proportion does not ensure that its
product continues being the same. However, this does happen in our real-world instances.
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∆s = 0% ∆s = 10% ∆s = 20%
solved PAR1 PAR10 solved PAR1 PAR10 solved PAR1 PAR10

no-imp 16 1835.82 14797.82 10 3720.64 36125.48 5 5437.97 54045.19
imp1 18 735.39 7216.33 12 3281.89 29205.53 5 5397.89 54004.82
imp2 20 746.34 746.34 15 2289.69 18492.07 6 5142.26 50508.96
imp12 20 148.54 148.54 15 1832.71 18035.06 10 4054.49 36458.95

Table 2: Statistics of solving some real-world B2B instances, varying the shape s, for a fixed
density d (with T · L fixed).
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Figure 5: Branching variables decided by the solver along its execution, for a random B2B
instance with low density, during their first 160000 decisions (solved by imp12 in 157729 dec.).

than imp12 dominates the other encodings. Therefore, this second observation also seems to
be valid in our set of instances.

4.4 Performance of the MaxSAT solver

Finally, let us conjecture why the use of implied constraints is beneficial to improve the perfor-
mance of the solver. In the following plots, all Boolean variables are grouped into the high-level
variables and constraints they encode (see the horizontal lines). These high-level variables are:
scheduling, usedSlot and fromSlot are directly the ones of the encoding, exactlyOne are the
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auxiliary variables to encode that each meeting is scheduled in a time slot exactly once, table-
Count are the auxiliary variables to encode that at most one meeting is scheduled in a time
slot and location, imp1 and imp2 are the auxiliary variables to encode the implied constraints,
and the rest are the auxiliary variables to deal with optimization and homogeneity. Vertical
lines represent the calls to the SAT solver used by the MaxSAT solver algorithm10.

In Figure 5, we represent the branching variables on which the solver decided along its ex-
ecution, for the encodings no-imp (top left), imp1 (top right), imp2 (bottom left) and imp12
(bottom right), for a random B2B instance generated with the regular model and low density
(P = 40, U = 0.1, T = 16 and L = 16). For simplicity, we only represent the results of a single
instance. However, we have found the same behavior in all instances we have analyzed. There-
fore, we expect the conclusions drawn from this plot are general. According to Observation 1,
instances with low density are solved faster by imp1 (and imp12 ). In fact, the runtime and the
number of decisions of each encodings are:

No implied constraints: 70.78 s 3444288 dec.
Implied constraint 1: 5.88 s 343487 dec.
Implied constraint 2: 84.16 s 3152049 dec.
Implied constraints 1 and 2: 3.07 s 157729 dec.

As this instance is solved by imp12 in 157729 decisions, we only represent the first 160000
decisions for the 4 encodings. However, the behavior shown in the plots is the same during the
whole execution.

We remark that Open-WBO uses a CDCL SAT solver internally (we use its default version,
which uses Glucose 3.0). In CDCL solvers, after each conflict, the variables involved in it are
increased their activity, and these activity counters are used by the branching heuristics to
select the next decision. Therefore, these decisions give an intuition about where the search
was performed.

We observe that in three encodings, variables scheduling, usedSlot, fromSlot and exactlyOne
are very active during the whole execution. This is expected since they represent the most
important variables of the problem. When we use one implied constraint only, this implied
constraint is very active. Also, when we use both implied constraints, they reinforce their
activity mutually, and hence, the performance of the solver is improved. This phenomenon is
clear in the plot, but we can analyze it in details during the whole execution. For instance, in
the encoding imp1, 3.90% of the decisions correspond to this implied constraint. When using
the encoding imp12, the percentage of decisions in the variables of the implied constraint 1 is
6.32% of the total. Therefore, the use of imp2 reinforces the activity of imp1, and hence, the
instance is solved faster.

In Figure 6, we represent the results of the same experiment using an instance with high
density (P = 40, U = 0.1, T = 12 and L = 12). Again, we only represent results for a single
instance but conclusions are general for the family. According to Observation 1, instances with
high density are solved faster by imp2 (and imp12 ). This is also the case of this instance, whose
runtime and number of decisions are:

No implied constraints: 74.47 s 1568888 dec.
Implied constraint 1: 36.97 s 631983 dec.
Implied constraint 2: 4.44 s 237389 dec.
Implied constraints 1 and 2: 0.84 s 42550 dec.

In this case, the encoding imp2 took 12.44% of its decisions on the Boolean variables of
this implied constraints. When we use both implied constraints imp12, the decisions on the
variables of the second implied constraint represent the 17.86% of the total number of decisions.

10The MaxSAT solver at hand has solved all instances using the MSU3 algorithm, an UNSAT-based MaxSAT
algorithm.
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Figure 6: Branching variables decided by the solver along its execution, for a random B2B
instance with high density, during their first 45000 decisions (solved by imp12 in 42550 dec.).

We also check these effects on some real instances (see [5] for more details). The encoding
imp1 is more efficient for the instance forum-14, taking 2.54% of its decision on this constraint.
When using both implied constraints, this increases up to 3.55% of the decisions. Similarly,
the encoding imp2 is more efficient solving the instance tic-14crafd, with a 4.93% of decision
on this constraint. When using both implied constraints, these decisions are the 5.18%. This
suggests that the previous hypothesis is also valid in real-world B2B problems.

Finally, we want to analyze the effect of implied constraints between two calls to the SAT
solver (vertical lines in the previous plots). Notice that all previous random instances have an
optimum equal to zero. This means that all meetings can be scheduled without idle periods.
On the other hand, many real-world B2B instances do have these idle periods, i.e., their opti-
mums are greater than zero, and hence, the SAT solver is called multiple times. Recall that
the algorithm MSU3, used by the MaxSAT solver Open-WBO, first solves the formula only
containing hard clauses. Then, it iteratively increases the possible number of unsatisfied soft
clauses (i.e., a lower-bound of the optimum), till finding the solution of the problem. Therefore,
solving any B2B instance requires at least two calls to the SAT solver.

Interestingly, we observed that the use of implied constraints allows to the SAT solver to find
lower-bounds to the optimum with unit propagation. In particular, all calls to the SAT solver
except the first and the last ones were solved without performing any decision. We conjecture
that the existence of idle periods may be produced in some cases by the existence of forbidden
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time slots (by a certain participant), and the use of implied constraints may detect them by unit
propagation. On the contrary, this does not occur when no implied constraints are used. This
suggests that redundant clauses (e.g., implied constraints) may increase the unit propagation
rates, and hence, improve the performance of the solver.

5 Conclusions and Future Work

In this paper, we provide an experimental study of the effectiveness of using implied constraints
in B2B scheduling problems using MaxSAT-based encodings.

Due to the limited number of real-world instances, we propose a random B2B instances
generator. This model is based on a probability that a participant requests a meeting with
another. Using our generator, we generate families of random B2B instances, and we study
the strengths and weakness of using implied constraints based on the characteristics of the
instance. We focus our analysis on the density (i.e., the ratio between the number of meetings
and the accommodation capacity) and the shape (i.e., the configuration of the accommodation
capacity).

We observe that there exists a duality in the benefits of the use of the two implied constraints
studied in this work. For small densities or certain shapes, it is more useful to use one of these
implied constraints. On the contrary, for high densities or opposites shapes, the other implied
constraint is more beneficial. Overall, the use of both implied constraints results into a very
good performance in all cases. Finally, we conjecture why this is the case by some observation
of the solver. We illustrate how the solver focuses its search when both implied are used.

As future work, we propose to analyze heuristics that, for instance, prioritizes its deci-
sions on the most relevant variables we have analyzed (i.e., imp1 or imp2 ), depending on the
characteristics of the problem, as the density or the shape.
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