Parallel Variable Elimination on CNF Formulas

Kilian Gebhardt Norbert Manthey

Knowledge Representation and Reasoning Group Technische Universität Dresden

July 8, 2013

• Formula simplification / preprocessing important part of SAT-Solving tool chain

- Formula simplification / preprocessing important part of SAT-Solving tool chain
- Simplification techniques polynomial bounded, but application until fixpoint takes long

- Formula simplification / preprocessing important part of SAT-Solving tool chain
- Simplification techniques polynomial bounded, but application until fixpoint takes long
- Simplification is limited in current SAT-solvers

- Formula simplification / preprocessing important part of SAT-Solving tool chain
- Simplification techniques polynomial bounded, but application until fixpoint takes long
- Simplification is limited in current SAT-solvers
- Research on parallel SAT-solving, but no parallel preprocessing

- Formula simplification / preprocessing important part of SAT-Solving tool chain
- Simplification techniques polynomial bounded, but application until fixpoint takes long
- Simplification is limited in current SAT-solvers
- Research on parallel SAT-solving, but no parallel preprocessing
- Parallel preprocessing without/less strict limits beneficial for solving hard formulas

Notation and Basic Concepts

- The set of variables occurring in a formula F: atoms(F).
- We assume an arbitrary, but fixed linear order on atoms(F).

•
$$F_l := \{C \in F \mid l \in C\}$$

- The neighbor variables (neighbors) of v: atoms $(F_v \cup F_{\overline{v}})$
- A clause C subsumes a clause D iff $C \subseteq D$.
- If $C = \{x, a_1, \dots, a_n\}$ and $D = \{\overline{x}, b_1, \dots, b_m\}$ then $C \otimes_x D := \{a_1, \dots, a_n, b_1, \dots, b_m\}.$
- Resolution on sets: $F \otimes_x G := \{ C \otimes_x D \mid C \in F, D \in G \}$
- Worker: part of an algorithm executed in parallel.

Section 2

SAT Preprocessing

Subsumption

Subsumption (CNF formulas F, G) removes all clauses D from a Formula F, where $\exists C \in G: C \subseteq D \land C \neq D$.

Strengthening / Self-Subsuming Resolution

```
C can strengthen D
iff C \otimes_l D \subseteq D.
iff C subsumes D except for one literal l \in C,
which occurs in D with the opposite sign.
```

```
Strengthening(CNF formulas F, G)
successively removes literals from F
by removing \overline{l} from D,
if C \in G can strengthen D \in F.
```

SubSimp

SubSimp (CNF formulas F, G)

- ¹ Subsumption(F,G)
- ² Strengthening(F,G)
- $H := \{ C \mid C \in F, \mathsf{changed} \}$
- 4 Subsumption(F,H)

If the algorithms are executed in this way, a fixed point is reached. Since strengthening is not confluent, there is in general **no unique** fixed point.

Variable Elimination

F is satisfiable iff $(F \setminus (F_x \cup F_{\overline{x}})) \cup (F_x \otimes_x F_{\overline{x}})$ is satisfiable.

Variable Elimination

F is satisfiable iff $(F \setminus (F_x \cup F_{\overline{x}})) \cup (F_x \otimes_x F_{\overline{x}})$ is satisfiable.

$$F = \{\underbrace{\{a, \overline{x}\}, \{b, \overline{x}\}, \{d, \overline{x}\}}_{= F_{\overline{x}}}, \underbrace{\{\overline{a}, \overline{b}, x\}, \{e, x\}}_{= F_{x}}, \{a, e, d\}\}}_{F_{x} \otimes_{x} F_{\overline{x}} = \{\{\overline{a}, \overline{b}, d\}, \{a, e\}, \{b, e\}, \{d, e\}\}}$$

$$(F \setminus (F_x \cup F_{\overline{x}})) \cup (F_x \otimes_x F_{\overline{x}}) = \{\{\overline{a}, \overline{b}, d\}, \{a, e\}, \{b, e\}, \{d, e\}, \{a, e, d\}\}$$

Variable Elimination

F is satisfiable iff $(F \setminus (F_x \cup F_{\overline{x}})) \cup (F_x \otimes_x F_{\overline{x}})$ is satisfiable.

VariableElimination (CNF formula F)

 ${}^{\scriptscriptstyle 1} \quad Q = \operatorname{atoms}(F)$

2 **do**

8

- $_{3}$ SubSimp(F,F)
- 4 for $v \in Q$ do
- 5 $Q := Q \setminus \{v\}$
- $S := F_v \otimes_v F_{\overline{v}}$

$$_{\overline{v}} \qquad \quad ext{if } |S| \leq |{F}_v| + |{F}_{\overline{v}}| ext{ then }$$

$$F := F \setminus (F_v \cup F_{\overline{v}})$$

•
$$F := F \cup S$$

- 10 SubSimp(F,S)
- update(Q)
- ¹² while changed

Section 3

Parallel SAT Preprocessing

How can we parallelize these techniques?

- (a) Divide the formula in disjoint parts. Run the workers without synchronization.
 - Optimal graph bisection is \mathcal{NP} -hard.
 - Limits simplifications, if the necessary clauses are assigned to different workers.

How can we parallelize these techniques?

- (a) Divide the formula in disjoint parts. Run the workers without synchronization.
 - Optimal graph bisection is \mathcal{NP} -hard.
 - Limits simplifications, if the necessary clauses are assigned to different workers.
- (b) Synchronize the workers with the help of locks.
 - Synchronization overhead.
 - Steps to construct a parallel algorithm:
 - (i) Identify critical sections.
 - (ii) Introduce a locking scheme.
 - (iii) Check if deadlocks can occur.

$$Q = \operatorname{atoms}(F)$$

- 2 **do**
- 3 SubSimp(F,F)
- $\begin{array}{lll} & \text{ for } v \in Q \text{ do} \\ & & \\ & 5 & Q := Q \setminus \{v\} \\ & 6 & S := F_v \otimes F_{\overline{v}} \\ & 7 & \text{ if } |S| \leq |F_v| + |F_{\overline{v}}| \text{ then} \\ & & F := F \setminus (F_v \cup F_{\overline{v}}) \\ & 9 & F := F \cup S \\ & 10 & \text{ SubSimp } (F,S) \end{array}$
 - 11 update(Q)
 - 12 while changed

$$Q = \operatorname{atoms}(F)$$

- 2 **do**
- ³ SubSimp(F,F)
- 4 **for** $v \in Q$ **do** 5 $Q := Q \setminus \{v\}$ 6 $S := F_v \otimes F_{\overline{v}}$ 7 **if** $|S| \le |F_v| + |F_{\overline{v}}|$ **then** 8 $F := F \setminus (F_v \cup F_{\overline{v}})$ 9 $F := F \cup S$ 10 SubSimp (F,S)
 - 11 update(Q)
 - 12 while changed
 - Lines 6-9: exclusive access to $F_v \cup F_{\overline{v}}$.

$$Q = \operatorname{atoms}(F)$$

- 2 **do**
- 3 SubSimp(F,F)
- 4 **for** $v \in Q$ **do** 5 $Q := Q \setminus \{v\}$
- ${}^{\mathbf{6}} \hspace{1cm} S := F_v \otimes F_{\overline{v}} \\$
- 7 if $|S| \le |F_v| + |F_{\overline{v}}|$ then 8 $F := F \setminus (F_v \cup F_{\overline{v}})$
- 9 $F := F \cup S$ 10 SubSimp (F,S)
- 11 update(Q)
- 12 while changed
- Lines 6-9: exclusive access to $F_v \cup F_{\overline{v}}$.
- Line 9: new clauses are created
 - \implies synchronization of Clause Database (CDB).

$$Q = \operatorname{atoms}(F)$$

- 2 **do**
- 3 SubSimp(F,F)
- 8 $F := F \setminus (F_v \cup F_{\overline{v}})$ 9 $F := F \cup S$
- 10 SubSimp (F,S)
- 11 update(Q)
- 12 while changed
- Lines 6-9: exclusive access to $F_v \cup F_{\overline{v}}$.
- Line 9: new clauses are created
 - \implies synchronization of Clause Database (CDB).
- Line 10: SubSimp executed in parallel to Variable Elimination.

• Locks (in this order \implies no deadlocks): variable locks, RW-Lock for CDB, lock per clause.

- Locks (in this order \implies no deadlocks): variable locks, RW-Lock for CDB, lock per clause.
- Accessing clauses: read-lock to CDB

- Locks (in this order ⇒ no deadlocks): variable locks, RW-Lock for CDB, lock per clause.
- Accessing clauses: read-lock to CDB
- Creating space reservation for new clauses: write-lock to CDB

- Locks (in this order \implies no deadlocks): variable locks, RW-Lock for CDB, lock per clause.
- Accessing clauses: read-lock to CDB
- Creating space reservation for new clauses: write-lock to CDB
- Conditions for exclusive access to a clause:
 - Locking all variables of the clause or
 - Locking a variable of the clause and the clause itself

- Locks (in this order \implies no deadlocks): variable locks, RW-Lock for CDB, lock per clause.
- Accessing clauses: read-lock to CDB
- Creating space reservation for new clauses: write-lock to CDB
- Conditions for exclusive access to a clause:
 - Locking all variables of the clause or
 - Locking a variable of the clause and the clause itself
- Eliminating v:

exclusive access to all clauses consisting of neighbors of \boldsymbol{v}

- Locks (in this order \implies no deadlocks): variable locks, RW-Lock for CDB, lock per clause.
- Accessing clauses: read-lock to CDB
- Creating space reservation for new clauses: write-lock to CDB
- Conditions for exclusive access to a clause:
 - Locking all variables of the clause or
 - Locking a variable of the clause and the clause itself
- Eliminating v:

exclusive access to all clauses consisting of neighbors of \boldsymbol{v}

$$F = \{\{a, b, v\}, \quad \{\overline{v}, c\}, \quad \{a, c\}\} \quad \operatorname{atoms}(F_v \cup F_{\overline{v}}) = \{a, b, c, v\}$$

Algorithm Sketch for Parallel Variable Elimination

ParallelVariableElimination (CNF $F, Q \subseteq \operatorname{atoms}(F)$)

- ${}_{\scriptscriptstyle 1} \quad \text{while } Q \neq \emptyset \text{ do}$
- $_{2}$ take v from Q
- ³ determine neighbors: $atoms(F_v \cup F_{\overline{v}})$
- 4 lock neighbors
- s check if neighbors of v changed
- ${}_{6}$ simulate elimination of v
- τ if elimination of v beneficial then
- $_{*}$ reserve memory for ${F}_{v}\otimes_{v}{F}_{\overline{v}}$
- $\circ \qquad F := (F \setminus (F_v \cup F_{\overline{v}})) \cup (F_v \otimes_v F_{\overline{v}})$
- 10 add $F_v \otimes_v F_{\overline{v}}$ to SubSimp-queue
- ¹¹ unlock neighbors
- ¹² SubSimp

Section 4

Evaluation

Benchmark Setup

- 880 Instances from SAT competition 2009, SAT Challange 2012 (+ "too hard"-submissions)
- No preprocessing limits
- Timeout of 3600 seconds
- AMD Opteron 6274 (2.2 GHs, 16 Cores, 16MB L3-Cache per 8 Cores)
- \bullet Implementations are part of $\operatorname{COPROCESSOR}\,3$

Subsumption - 8 Cores

SubSimp - 8 Cores

SubSimp - 16 Cores

Variable Elimination - 4 Cores

Variable Elimination-4

Variable Elimination - 8 Cores

Simplification Quality

	Subsumption					SubSimp				
Cores	0	1	8	16		0	1	4	8	16
T_{Simp}	1.8	2.5	0.5	1.8	8	7.7	8.7	5.6	4.0	3.7
SAT	240 2	240	268	263	3	246	254	262	2 264	263
UNSAT	229 2	227	259	26	1	222	245	257	7 259	256
total	469 4	167	527	524	1.	468	499	519	523	519
	Variable Elimination									
Cores	0	1	R_0	1	4	8	3.	R_8	16	
T_{Simp}	19.	8 1	8.2 2	27.6	20.4	l 19	.6 1	6.8	28.8	
SAT	25	5 2	70	249	270	26	64 2	269	262	
UNSAT	25	2 2	83	257	295	28	37 2	<u>2</u> 84	286	
total	50	75	53	506	565	55	51 5	553	548	

Conclusion

- Variable elimination is one of the most important simplification techniques.
- We showed how variable elimination, subsumption and strengthening, can be parallelized with the help of a low-level locking approach.
- A speedup of almost 2 could be reached for variable elimination.
- For subsumption and strengthening an average speedup of 4 is obtained.
- Future work:
 - Influence of formula topology on the performance of parallel variable elimination.
 - Better understanding of strengthening.
 - Heuristics when to use parallel preprocessing
 - Parallelization of other techniques

Thank you for your attention!