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Introduction (1)

One major topic related to this talk is Message Passing

Message Passing (MP) is known to the SAT community

but not well understood

To make things even worse, this talk refers to an MP heuristic that
has just been developed: ρσPMPi

The talk regarding ρσPMPi

theory-heavy
is substantial
is given on Thursday

Repeating the details here is not possible

We have no option but to view ρσPMPi as a “black-box” for this talk
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Introduction (2)

MP is a class of algorithms

H ∈ MP can be understood as a variable and value ordering heuristic
in the context of SAT

The main goal of H is to provide biases for the variables in a given
CNF F

∀v : βH(v) ∈ [−1.0, 1.0]
The biases are used to guide the search (CDCL or SLS)

What MP heuristics do we currently have?

What are their respective strengths and weaknesses?
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Introduction (3)

1 Belief Propagation (BP)
Is not guaranteed to converge
Provides biases carelessly (erratic MP behavior)
Works comparatively well on small random satisfiable formulas

2 Survey Propagation (SP)
Is not guaranteed to converge
Provides biases carefully (less erratic MP behavior)
Works comparatively well on large random satisfiable formulas

3 EM Belief Propagation Global (EMBPG)
Is guaranteed to converge
Provides biases carelessly (erratic MP behavior)
Works comparatively well structured (crafted) formulas

4 EM Survey Propagation Global (EMSPG)
Is guaranteed to converge
Provides biases carefully (less erratic MP behavior)
Works comparatively well structured (crafted) formulas
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Introduction (4)

The options to introduce MP into a SAT solver look pretty decent.

Where is the problem?

Introducing MP into a SAT solver requires to choose from the given
heuristics.

A heuristic is better suited to solve specific types of formulas

A heuristic will not be helpful on the others

No matter how you choose, you will always choose wrong

Introducing any of the basic MP heuristics results in a robustness
problem.

We need more flexible MP heuristics!
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Introduction (5)

How do we derive more flexible heuristics?

Interpolation!

ISI is used to interpolate two given MP heuristics into a new, more
general one. Assume

We want to interpolate BP and SP
Given an interpolation parameter ρ ∈ [0.0, 1.0]
Resulting in ρSPi = ISI(BP,SP, ρ)

An interpolation can mimic the behavior of what it interpolates

Setting ρ = 0 results in βBP(v) = βiρSP(v, 0)

Setting ρ = 1 results in βSP(v) = βiρSP(v, 1)

An interpolation can gradually adapt between them

Setting ρ ∈ (0.0, 1.0) adapts the carefulness between BP and SP.
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Introduction (6)

Possible interpolations: the current situation.

BP

EMBPG
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EMSPG
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SP
EMBPG
EMSPG

Level 0
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Introduction (7)

Possible interpolations: after applying ISI.
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ρσPMPi (1)

Why is ρσPMPi so special?

It is the most general product-based MP heuristic.

It can mimic the behavior of all others.

It can provide MP behavior that cannot be achieved by any other
heuristic.

Each point in the parameter plane (ρ, σ) ∈ [0.0, 1.0]2 characterizes a
specific MP behavior.
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1

r

s
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ρσPMPi (2)

Why is ρσPMPi so special?
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ρσPMPi (3)

Using ρσPMPi in a SAT solver circumvents the robustness problem.

Implement only ρσPMPi

The desired MP behavior can be achieved by setting ρ, σ accordingly

How to set ρ and σ in order to solve a specific formula?
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Goals

1 Deploy the new MP heuristic ρσPMPi within a CDCL solver

2 Keep it simple

3 Determine the preferable MP behavior for different types of CNF
formulas: how to set ρ and σ?

4 Determine how important the flexibility of ρσPMPi is
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Message Passing Inspired Decimation

Common use of MP biases: Message Passing Inspired Decimation (MID).
Assume we have a parameter p ∈ (0.0, 1.0].

1 Reset the empty assignment α = {}
2 Compute ∀v 6∈ α : βH(v)

3 Sort the variables according to the largest | βH(v)|
4 Assign a variable following that order, the sign of βH(v) determines

the assignment (extend α with this decision)

5 Perform unit propagation (extend α with all implications)
6 Determine the result

If a solution is found or a conflict occurred, stop
Otherwise

If p · n variables were assigned, go to 2
Otherwise go to 3.

What is CDCL-based MID?
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CDCL-based MID

1 Reset the empty assignment α = {}
2 Compute ∀v : βH(v)

3 Initialize CDCL VSIDS activities with | βH(v)|
4 Initialize CDCL variable phases using the sign of βH(v)
5 Call CDCL in order to extend α

Have it assign p · n new variables
Must not return until this is done
Clause learning is done within the CDCL
Learned clauses are invisible to MP

6 After CDCL returns we check the result

If it returns a solution or returns “unsatisfiable”, stop
Otherwise, go back to 2.
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DimetheusMP vs. DimetheusJW

We implemented

the CDCL-based MID in the solver DimetheusMP using ρσPMPi

a twin solver DimetheusJW that uses Jeroslow-Wang instead of
ρσPMPi

Both solvers perform the exact same type of CDCL search. They differ in

the bias computation to initialize VSIDS/PS: JW vs. MP

the parameters: ρ, σ, p are only present in DimetheusMP

The crucial observation is, that DimetheusMP has an increased flexibility
when it comes to parameter tuning.

How did we proceed to do the tuning?
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Parameter Tuning

We proceeded as follows.

1 Separate all formulas from the SC2012 into different classes
2 Run the solvers on each class (timeout 2000 seconds)

DimetheusJW (once) in order to determine the base performance
Lingeling (once) in order to get a SOTA reference performance
DimetheusMP while tuning ρ, σ, p with EDACC/AAC
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Excerpt of the Results (1)

Benchmark S/U Solver Performance
DimetheusJW DimetheusMP

% PAR10 % PAR10 ρ σ p
battleship S 47.4 10627.2 89.5 2130.1 0.5002 0.0025 0.0021
battleship U 55.6 8919.7 55.6 8890.4 0.4463 1.0000 0.1256
em-all S 75.0 5263.7 100.0 75.4 0.8606 0.1295 0.8903
em-compact S 0.0 20000.0 37.5 12728.5 0.9229 0.7946 0.8281
em-explicit S 75.0 5473.3 100.0 157.1 0.2932 0.2698 0.0853
em-fbcolors S 12.5 17723.3 37.5 12662.9 0.0000 0.1731 0.7672
grid-pebbling S 100.0 16.5 100.0 8.0 0.9931 0.3890 0.6449
grid-pebbling U 88.9 2226.9 100.0 4.7 0.5884 0.0035 0.2213
sgen1 S 16.7 16677.7 27.8 14460.9 0.0937 0.6563 0.4688
k3-r4.200-n40000 S 0.0 20000.0 100.0 22.7 0.9929 0.0004 0.0447
k3-r4.237-n18800 S 0.0 20000.0 75.0 5026.8 0.9961 0.0000 0.0042
k4-r9.000-n10000 S 0.0 20000.0 100.0 10.0 0.8592 0.0000 0.1533
k4-r9.526-n4800 S 0.0 20000.0 100.0 5.2 0.9530 0.0000 0.0337
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Excerpt of the Results (2)

Most important results are

The flexibility of ρσPMPi is important (almost always, we have
ρ, σ 6∈ {0.0, 1.0})
Using MP can be very helpful to solve crafted formulas (satisfiable
and unsatisfiable ones)

Enforcing convergence (σ > 0.0) is not helpful on random formulas
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Issues with the Empirical Study

Reviewer 1: “As submitted, this paper does not show anything.”

Several classes contain only a small set of formulas

Robustness of the reported settings for ρ, σ, p is questionable
We need more formulas, or even better, generators!
We cannot use, what isn’t there

Missing test-classes

No results on application formulas
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Conclusions

The most important conclusions are as follows.

The empirical study gives a hint that MP can be very helpful to solve
random and crafted formulas.

The flexibility of ρσPMPi is crucial to achieve this performance.
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Thanks

Thank you for your attention!

You can send comments and questions to
oliver@gableske.net
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