Introduction	Goals	MP in the context of CDCL	Empirical Study	Conclusions
000000000	0	000	0000	00

On the Performance of CDCL-based Message Passing Inspired Decimation using $\rho\sigma PMP^i$

Oliver Gableske¹, Sven Müelich, Daniel Diepold

¹Institute of Theoretical Computer Science Ulm University Germany

> oliver@gableske.net https://www.gableske.net

Pragmatics of SAT, 08.07.2013

Introduction	Goals	MP in the context of CDCL	Empirical Study	Conclusions
0000000000	O		0000	00
Outline				

2 Goals

MP in the context of CDCL

- Message Passing Inspired Decimation
- CDCL-based MID
- DimetheusMP vs. DimetheusJW

4 Empirical Study

- Setup
- Results
- Issues with the Empirical Study

5 Conclusions

Introduction •000000000	Goals O	MP in the context of CDCL	Empirical Study	Conclusions
Introductio	n (1)			

- One major topic related to this talk is Message Passing
- Message Passing (MP) is known to the SAT community
 - but not well understood
- To make things even worse, this talk refers to an MP heuristic that has just been developed: $\rho\sigma PMP^i$
- The talk regarding $\rho\sigma \text{PMP}^i$
 - theory-heavy
 - is substantial
 - is given on Thursday
- Repeating the details here is not possible
 - We have no option but to view $\rho\sigma \text{PMP}^i$ as a "black-box" for this talk

Introduction	Goals O	MP in the context of CDCL	Empirical Study	Conclusions
Introductio	n (2)			

- MP is a class of algorithms
- $\bullet~H\in \mathsf{MP}$ can be understood as a variable and value ordering heuristic in the context of SAT
- The main goal of H is to provide *biases* for the variables in a given CNF F
- $\bullet \ \forall v: \beta_{\mathsf{H}}(v) \in [-1.0, 1.0]$
- The biases are used to guide the search (CDCL or SLS)

Introduction	Goals O	MP in the context of CDCL	Empirical Study	Conclusions
Introductio	n (2)			

- MP is a class of algorithms
- $\bullet~H\in \mathsf{MP}$ can be understood as a variable and value ordering heuristic in the context of SAT
- The main goal of H is to provide *biases* for the variables in a given CNF F
- $\bullet \ \forall v: \beta_{\mathsf{H}}(v) \in [-1.0, 1.0]$
- The biases are used to guide the search (CDCL or SLS)
- What MP heuristics do we currently have?
- What are their respective strengths and weaknesses?

Introduction 000000000	Goals O	MP in the context of CDCL	Empirical Study 0000	Conclusions
Introducti	on (3)			

Belief Propagation (BP)

- Is not guaranteed to converge
- Provides biases carelessly (erratic MP behavior)
- Works comparatively well on small random satisfiable formulas

Survey Propagation (SP)

- Is not guaranteed to converge
- Provides biases carefully (less erratic MP behavior)
- Works comparatively well on large random satisfiable formulas

Selief Propagation Global (EMBPG)

- Is guaranteed to converge
- Provides biases carelessly (erratic MP behavior)
- Works comparatively well structured (crafted) formulas

G EM Survey Propagation Global (EMSPG)

- Is guaranteed to converge
- Provides biases carefully (less erratic MP behavior)
- Works comparatively well structured (crafted) formulas

Introduction	Goals O	MP in the context of CDCL	Empirical Study	Conclusions
Introductio	n (4)			

The options to introduce MP into a SAT solver look pretty decent.

• Where is the problem?

Introducing MP into a SAT solver requires to choose from the given heuristics.

- A heuristic is better suited to solve specific types of formulas
- A heuristic will not be helpful on the others
- No matter how you choose, you will always choose wrong

Introducing any of the basic MP heuristics results in a robustness problem.

Introduction	Goals O	MP in the context of CDCL	Empirical Study	Conclusions
Introductio	n (4)			

The options to introduce MP into a SAT solver look pretty decent.

• Where is the problem?

Introducing MP into a SAT solver requires to choose from the given heuristics.

- A heuristic is better suited to solve specific types of formulas
- A heuristic will not be helpful on the others
- No matter how you choose, you will always choose wrong

Introducing any of the basic MP heuristics results in a robustness problem.

• We need more flexible MP heuristics!

Introduction	Goals	MP in the context of CDCL	Empirical Study	Conclusions
000000000	O	000	0000	
Introductio	n (5)			

How do we derive more flexible heuristics?

- Interpolation!
- ISI is used to interpolate two given MP heuristics into a new, more general one. Assume
 - We want to interpolate BP and SP
 - Given an interpolation parameter $\rho \in [0.0, 1.0]$
 - Resulting in $\rho \mathsf{SP}^i = \mathsf{ISI}(\mathsf{BP},\mathsf{SP},\rho)$

• An interpolation can mimic the behavior of what it interpolates

- Setting $\rho=0$ results in $\beta_{\rm BP}(v)=\beta^i_{\rho{\rm SP}}(v,0)$
- Setting $\rho=1$ results in $\beta_{\rm SP}(v)=\beta^{i}_{\rho{\rm SP}}(v,1)$
- An interpolation can gradually adapt between them
 - Setting $\rho \in (0.0, 1.0)$ adapts the carefulness between BP and SP.

Introduction	Goals	MP in the context of CDCL	Empirical Study	Conclusions
0000000000	0	000	0000	00
Introducti	ion (6)			

Possible interpolations: the current situation.

Introduction	Goals	MP in the context of CDCL	Empirical Study	Conclusions
0000000000	0	000	0000	00
Introductio	on (7)			

Possible interpolations: after applying ISI.

Level 0	Level 1	Level 2
BP	σEMBPG ⁱ	ρσΡΜΡ ⁱ
SP	σEMSPG ⁱ	
EMBPG	ρSP ⁱ	
EMSPG	ρEMSPG ¹	

Introduction	Goals O	MP in the context of CDCL	Empirical Study	Conclusions
$ ho\sigma PMP^i$ (1	.)			

Why is $\rho\sigma PMP^i$ so special?

- It is the most general product-based MP heuristic.
- It can mimic the behavior of all others.
- It can provide MP behavior that cannot be achieved by any other heuristic.

Each point in the parameter plane $(\rho,\sigma)\in[0.0,1.0]^2$ characterizes a specific MP behavior.

Introduction	Goals O	MP in the context of CDCL	Empirical Study	Conclusions
$ ho\sigma PMP^i$ (2	2)			

Why is $\rho\sigma PMP^i$ so special?

- It is the most general product-based MP heuristic.
- It can mimic the behavior of all others.
- It can provide MP behavior that cannot be achieved by any other heuristic.

Each point in the parameter plane $(\rho,\sigma)\in[0.0,1.0]^2$ characterizes a specific MP behavior.

Introduction	Goals O	MP in the context of CDCL	Empirical Study	Conclusions
$ ho\sigma PMP^i$ (3	3)			

Using $\rho\sigma PMP^i$ in a SAT solver circumvents the robustness problem.

- Implement only $\rho\sigma PMP^i$
- \bullet The desired MP behavior can be achieved by setting ρ,σ accordingly

How to set ρ and σ in order to solve a specific formula?

Introduction 0000000000	Goals ●	MP in the context of CDCL	Empirical Study	Conclusions
Goals				

- **9** Deploy the new MP heuristic $\rho\sigma$ PMPⁱ within a CDCL solver
- Ø Keep it simple
- Otermine the preferable MP behavior for different types of CNF formulas: how to set ρ and σ?
- **9** Determine how important the flexibility of $\rho\sigma PMP^i$ is

Message Passing Inspired Decimation

Common use of MP biases: Message Passing Inspired Decimation (MID). Assume we have a parameter $p \in (0.0, 1.0]$.

- Reset the empty assignment $\alpha = \{\}$
- 2 Compute $\forall v \notin \alpha : \beta_{\mathsf{H}}(v)$
- **③** Sort the variables according to the largest $|\beta_{\rm H}(v)|$
- Assign a variable following that order, the sign of $\beta_{\rm H}(v)$ determines the assignment (extend α with this decision)
- **9** Perform unit propagation (extend α with all implications)
- Oetermine the result
 - If a solution is found or a conflict occurred, stop
 - Otherwise
 - $\bullet~$ If $p\cdot n$ variables were assigned, go to 2
 - Otherwise go to 3.

What is CDCL-based MID?

Introduction	Goals	MP in the context of CDCL	Empirical Study	Conclusions
0000000000	O	○●○	0000	
CDCL-base	ed MID			

- Reset the empty assignment $\alpha = \{\}$
- **2** Compute $\forall v : \beta_{\mathsf{H}}(v)$
- $\textbf{ Initialize CDCL VSIDS activities with } |\beta_{\mathsf{H}}(v)|$
- $\label{eq:all_cond} \bullet \ \mbox{Call CDCL in order to extend} \ \alpha$
 - Have it assign $p \cdot n$ new variables
 - Must not return until this is done
 - Clause learning is done within the CDCL
 - Learned clauses are invisible to MP
- O After CDCL returns we check the result
 - If it returns a solution or returns "unsatisfiable", stop
 - Otherwise, go back to 2.

Introduction 0000000000	Goals O	MP in the context of CDCL	Empirical Study	Conclusions
Dimetheus	MP vs	DimetheusJW		

We implemented

- the CDCL-based MID in the solver <code>DimetheusMP</code> using $ho\sigma {\rm PMP}^i$
- a twin solver DimetheusJW that uses Jeroslow-Wang instead of $\rho\sigma {\rm PMP}^i$

Both solvers perform the exact same type of CDCL search. They differ in

- the bias computation to initialize VSIDS/PS: JW vs. MP
- \bullet the parameters: ρ,σ,p are only present in <code>DimetheusMP</code>

The crucial observation is, that DimetheusMP has an increased flexibility when it comes to parameter tuning.

How did we proceed to do the tuning?

Introduction 0000000000	Goals O	MP in the context of CDCL	Empirical Study ●○○○	Conclusions
Parameter	Tuning			

We proceeded as follows.

- Separate all formulas from the SC2012 into different classes
- Q Run the solvers on each class (timeout 2000 seconds)
 - DimetheusJW (once) in order to determine the base performance
 - Lingeling (once) in order to get a SOTA reference performance
 - \bullet DimetheusMP while tuning ρ,σ,p with EDACC/AAC

Introduction

Goals

MP in the context of CDCL

Empirical Study

Conclusions

Excerpt of the Results (1)

Benchmark	S/U	Solver Performance						
		Dime	theusJW		DimetheusMP			
		%	PAR10	%	PAR10	ρ	σ	p
battleship	S	47.4	10627.2	89.5	2130.1	0.5002	0.0025	0.0021
battleship	U	55.6	8919.7	55.6	8890.4	0.4463	1.0000	0.1256
em-all	S	75.0	5263.7	100.0	75.4	0.8606	0.1295	0.8903
em-compact	S	0.0	20000.0	37.5	12728.5	0.9229	0.7946	0.8281
em-explicit	S	75.0	5473.3	100.0	157.1	0.2932	0.2698	0.0853
em-fbcolors	S	12.5	17723.3	37.5	12662.9	0.0000	0.1731	0.7672
grid-pebbling	S	100.0	16.5	100.0	8.0	0.9931	0.3890	0.6449
grid-pebbling	U	88.9	2226.9	100.0	4.7	0.5884	0.0035	0.2213
sgen1	S	16.7	16677.7	27.8	14460.9	0.0937	0.6563	0.4688
k3-r4.200-n40000	S	0.0	20000.0	100.0	22.7	0.9929	0.0004	0.0447
k3-r4.237-n18800	S	0.0	20000.0	75.0	5026.8	0.9961	0.0000	0.0042
k4-r9.000-n10000	S	0.0	20000.0	100.0	10.0	0.8592	0.0000	0.1533
k4-r9.526-n4800	S	0.0	20000.0	100.0	5.2	0.9530	0.0000	0.0337

Introduction Goals MP in the context of CDCL Empirical Study Conclusions

Most important results are

- The flexibility of $\rho\sigma PMP^i$ is important (almost always, we have $\rho, \sigma \notin \{0.0, 1.0\}$)
- Using MP can be very helpful to solve crafted formulas (satisfiable *and* unsatisfiable ones)
- Enforcing convergence ($\sigma > 0.0$) is not helpful on random formulas

 Introduction
 Goals
 MP in the context of CDCL
 Empirical Study
 Conclusions

 0000000000
 0
 000
 000
 000
 000

Issues with the Empirical Study

Reviewer 1: "As submitted, this paper does not show anything."

• Several classes contain only a small set of formulas

- $\bullet\,$ Robustness of the reported settings for ρ,σ,p is questionable
- We need more formulas, or even better, generators!
- We cannot use, what isn't there
- Missing test-classes
- No results on application formulas

Introduction	Goals	MP in the context of CDCL	Empirical Study	Conclusions
0000000000	O	000		•0
Conclusio	ns			

The most important conclusions are as follows.

- The empirical study gives a hint that MP can be very helpful to solve random and crafted formulas.
- The flexibility of $\rho\sigma \mathsf{PMP}^i$ is crucial to achieve this performance.

Introduction	Goals	MP in the context of CDCL	Empirical Study	Conclusions
000000000	0	000	0000	00
I hanks				

Thank you for your attention!

You can send comments and questions to oliver@gableske.net The paper regarding the MP theory:

O. Gableske On the Interpolation between Product-Based Message Passing Heuristics for SAT

The paper regarding the practical aspects:

O. Gableske, S. Müelich, D. Diepold On the Performance of CDCL-based Message Passing Inspired Decimation using $\rho\sigma PMP^i$

You can download the papers and the Dimetheus sources from https://www.gableske.net