Compiling Finite Domain Constraints to SAT with BEE
 Michael Codish
 S
 DIRECTORS CUT

Department of Computer Science Ben Gurion University Beer-Sheva, Israel

Joint work: Yoav Fekete \& Amit Metodi
cādence
In Collaboration with: Vitaly Lagoon \& Peter Stuckey

It is all about: Solving hard problems
via SAT encodings

Ben-Gurion

Equi-propagation
was born (*) with two objectives:
Encoder

- Facilitate the (user) process of encoding a (constraint) problem to CNF
- Compile constraint models to CNF while applying optimizations in order to generate (usually) smaller and better CNF formulas.

(*) Amit Metodi, Michael Codish, Vitaly Lagoon, Peter J. Stuckey: Boolean Equi-propagation for Optimized SAT Encoding. CP 2011: 621-636

SAT'ing Assignment

Outline

- Introduction
- BEE in a nutshell
- Order encoding (representing integers)
- Equi-propagation (ad-hoc)
- The "new" stuff
- Complete Equi-Propagation
- Cardinality Constraints in BEE
- The binary extension of BEE

Example: encoding Sudoku

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

$$
\begin{aligned}
& \text { new_int }\left(\mathrm{X}_{1,1}, 1,9\right) \\
& \quad \vdots \\
& \text { new_int }\left(\mathrm{X}_{9,9}, 1,9\right) \\
& \text { allDiff }\left(\left[\mathrm{X}_{1,1}, \ldots, \mathrm{X}_{1,9}\right]\right) \\
& \quad \vdots \\
& \text { int_eq }\left(\mathrm{X}_{1,1}, 5\right) \\
& \text { int_eq }\left(\mathrm{X}_{1,2}, 3\right)
\end{aligned}
$$

The Usual Approach

The Usual Approach

Problem

 (hard)The CNF you want to optimize did not fall out of the sky

Optimize it while
Let the constraint model drive the CNF optimization

The BEE Approach

The BEE Approach

Equi-propagate

TWO DESIGN CHOICES

$>$ Representing numbers

Order encoding (unary)

$$
\begin{aligned}
& X=\left[x_{1}, \ldots, x_{i}, \ldots, x_{n}\right] \\
& x_{i} \leftrightarrow(x \geq i) \\
& (x=3)=[1,1,1,0,0]
\end{aligned}
$$

whys

Lots of equi-propagation

$2 x$

$$
\begin{aligned}
& \text { [uv] } \\
& \hat{i} X \neq i \Leftrightarrow u=v
\end{aligned}
$$

$$
\left[x_{1}, x_{2}, x_{3}\right]+\left[y_{1}, y_{2}, y_{3}\right]=3
$$

The Encoding to SAT needs NO Clauses. It is obtained by unification

$$
\begin{aligned}
& x_{1}=-y_{3} \\
& x_{2}=-y_{2} \\
& x_{3}=-y_{1}
\end{aligned}
$$

TWO DESIGN CHOICES

$>$ Implementing Equi-Propagation

1. Using $B D D^{\prime}$ s.

- Prohibitive for global constraints.
- Complete

2. Using SAT (on small groups of constraints)

- In practice, surprisingly, "not slow"
- Complete

3. Ad-Hoc rules (per constraint type)

- Fast, precise in practice
- Incomplete

Ad-Hoc Rules: int_plus

$>$ Equi-Propagation

$c=$ int_plus (X, Y, Z) where $X=\left\langle x_{1}, \ldots, x_{n}\right\rangle$,	
$Y=\left\langle y_{1}, \ldots, y_{m}\right\rangle$, and $Z=\left\langle z_{1}, \ldots, z_{n+m}\right\rangle$	
if in E	then add in $\mu_{\mathrm{c}}(\mathrm{E})$
$X \geq i, Y \geq j$	$Z \geq i+j$
$X<i, Y<j$	$Z<i+j-1$
$Z \geq k, X<i$	$Y \geq k-i$
$Z<k, X \geq i$	$Y<k-i$
$X=i$	$z_{i+1}=y_{1}, \ldots, z_{i+m}=y_{m}$
$Z=k$	$x_{1}=\neg y_{k}, \ldots, x_{k}=\neg y_{1}$

>Partial Evaluation

$c=$ int_plus (X, Y, Z) where $X=\left\langle x_{1}, \ldots, x_{n}\right\rangle$,	
$Y=\left\langle y_{1}, \ldots, y_{m}\right\rangle$, and $Z=\left\langle z_{1}, \ldots, z_{n+m}\right\rangle$	
if	then replace with
$X=i$	true
$Z=k$	true
$X \geq i, Z \geq i$	int_plus $\left(\left[x_{i+1}, \ldots, x_{n}\right], Y\right.$,
	$\left.\left[z_{i+1}, \ldots, z_{n+m}\right]\right)$
$X \leq i, Z \leq i+m$	int_plus $\left(\left[x_{1}, \ldots, x_{i}\right], Y\right.$,
	$\left.\left[z_{1}, \ldots, z_{i+m}\right]\right)$

Outline

- Introduction
- BEE in a nutshell
http://amit.metodi.me/research/bee/
- The "new" stuff
- Complete Equi-Propagation
- Cardinality Constraints in BEE
- The binary extension of BEE

Complete Equi-propagation

designate specific sets of constraints for complete equi-propagation (using a SAT solver)

Example: Kakuro

5	19		
13	I_{1}	I_{2}	4
12	I_{3}	I_{4}	I_{5}
	3^{3}	I_{6}	I_{7}

new_int $\left(I_{1}, 1,9\right)$	int_array_plus $\left(\left[\mathrm{I}_{1}, \mathrm{I}_{2}\right], 13\right)$	alldiff $\left(\left[\mathrm{I}_{1}, \mathrm{I}_{2}\right]\right)$
new_int $\left(\mathrm{I}_{2}, 1,9\right)$	int_array_plus $\left(\left[\mathrm{I}_{1}, \mathrm{I}_{3}\right], 5\right)$	allDiff $\left(\left[\mathrm{I}_{1}, \mathrm{I}_{3}\right]\right)$
new_int $\left(\mathrm{I}_{3}, 1,9\right)$	int_array_plus $\left.\left(\mathrm{I}_{3}, \mathrm{I}_{4}, \mathrm{I}_{5}\right], 12\right)$	allDiff $\left(\left[\mathrm{I}_{3}, \mathrm{I}_{4}, \mathrm{I}_{5}\right)\right)$
new_int $\left(\mathrm{I}_{4}, 1,9\right)$	int_array_plus $\left(\left[\mathrm{I}_{2}, \mathrm{I}_{4}, \mathrm{I}_{6}\right], 19\right)$	allDiff $\left(\left[\mathrm{I}_{2}, \mathrm{I}_{4}, \mathrm{I}_{6}\right]\right)$
new_int $\left(\mathrm{I}_{5}, 1,9\right)$	int_array_plus $\left(\left[\mathrm{I}_{6}, \mathrm{I}_{7}\right], 3\right)$	allDiff $\left(\left[\mathrm{I}_{6}, \mathrm{I}_{7}\right]\right)$
new_int $\left(\mathrm{I}_{6}, 1,9\right)$	int_array_plus $\left(\left[\mathrm{I}_{5}, \mathrm{I}_{7}\right], 4\right)$	allDiff $\left(\left[\mathrm{I}_{5}, \mathrm{I}_{7}\right]\right)$
new_int $\left(\mathrm{I}_{7}, 1,9\right)$		

Example: Kakuro

13	19		
12	I_{1}	I_{2}	4
12	I_{3}	I_{4}	I_{5}
	3^{3}	I_{6}	I_{7}

CEP

new_int $\left(\mathrm{I}_{1}, 1,9\right)$	int_array_plus $\left(\left[\mathrm{I}_{1}, \mathrm{I}_{2}\right], 13\right)$	alldiff $\left(\left[\mathrm{I}_{1}, \mathrm{I}_{2}\right]\right)$
new_int $\left(\mathrm{I}_{2}, 1,9\right)$	int_array_plus $\left(\left[\mathrm{I}_{1}, \mathrm{I}_{3}\right], 5\right)$	alldiff $\left(\left[\mathrm{I}_{1}, \mathrm{I}_{3}\right]\right)$
new_int $\left(\mathrm{I}_{3}, 1,9\right)$	int_array_plus $\left(\left[\mathrm{I}_{3}, \mathrm{I}_{4}, \mathrm{I}_{5}\right.\right.$, 12 $)$	allDiff $\left(\left[\mathrm{I}_{3}, \mathrm{I}_{4}, \mathrm{I}_{5}\right]\right)$
new_int $\left(\mathrm{I}_{4}, 1,9\right)$	int_array_plus $\left(\left[\mathrm{I}_{2}, \mathrm{I}_{4}, \mathrm{I}_{6}\right], 19\right)$	allDiff $\left(\left[\mathrm{I}_{2}, \mathrm{I}_{4}, \mathrm{I}_{6}\right]\right)$
new_int $\left(\mathrm{I}_{5}, 1,9\right)$	int_array_plus $\left(\left[\mathrm{I}_{6}, \mathrm{I}_{7}\right], 3\right)$	allDiff $\left(\left[\mathrm{I}_{6}, \mathrm{I}_{7}\right]\right)$
new_int $\left(\mathrm{I}_{6}, 1,9\right)$	int_array-plus $\left(\left[\mathrm{I}_{5}, \mathrm{I}_{7}\right], 4\right)$	allDiff $\left(\left[\mathrm{I}_{5}, \mathrm{I}_{7}\right]\right)$
new_int $\left(\mathrm{I}_{7}, 1,9\right)$		

CEP is similar to Backbones

Backbones are about detecting variables which take fixed values in all solutions

CEP is also about detecting equations between variables which take fixed values in all solutions

$$
\begin{gathered}
\varphi \models x=1 \\
\varphi \models x=0
\end{gathered}
$$

$$
\varphi \models x=1
$$

$$
\varphi \models x=0
$$

$$
\varphi \models x=y
$$

$$
\varphi \models x=-y
$$

Backbones using SAT

Assume φ with

 $n=5$ variablesiteration \#1: $\operatorname{sat}(\varphi)$

Only the last call is unsat.

Backbones for Equality (CEP)

Essentially the same; Define

$$
\varphi^{\prime}=\varphi \wedge\left\{e_{i j} \leftrightarrow\left(x_{i} \leftrightarrow x_{j}\right) \mid 0 \leq i<j \leq n\right\}
$$

and then apply a backbone algorithm

But, we have added $O\left(n^{2}\right)$ new variables (???)

Backbones for Equality (CEP)

$$
\begin{aligned}
& \varphi_{2}=\varphi_{1} \wedge\binom{\neg x_{1} \vee x_{3} \vee e_{13} \vee}{\neg e_{24} \vee \neg e_{25} \vee{ }^{\prime}} \\
& \varphi_{3}=\varphi_{2} \wedge\left(\neg x_{1} \vee x_{3} \vee e_{13} \vee e_{45}\right) \quad \begin{array}{l}
\text { iteration \#1 and \#2: sat }(\varphi) \\
\text { (two different assignments }
\end{array} \\
& \begin{array}{l}
\text { iteration \#3: sat }(\varphi) \\
\text { (and flip at least one } \\
\text { that didn't flip yet) }
\end{array}
\end{aligned}
$$

Backbones for Equality (CEP)

Theorem

Let φ be a CNF, X a set of n variables, and $\Theta=\left\{\theta_{1}, \ldots, \theta_{m}\right\}$ the sequence of assignments encountered by the CEP algorithm for φ and X. Then, $m \leq n+1$.

Outline

- Introduction
- BEE in a nutshell
http://amit.metodi.me/research/bee/
- The "new" stuff
- Complete Equi-Propagation
- Cardinality Constraints in BEE
- The binary extension of BEE

Cardinality Constraints

1 BDD like structure (symbolic)

2
 sorting networks (unary)

network of adders (binary)

Sat encoding - cardinality constraints

sorting networks (defined recursively)

defined recursively; so it is all in the merger

Many adapt this approach applying Batcher's Odd Even Sorting Network

Another option is Parberry's "pairwise" sorting networks

The odd-even merger is basically a unary adder and consists of $O(n \log n)$ "comparators".

Totalizers (same but with different merger)

Totalizers: define the merger with a direct encoding $O\left(n^{2}\right)$ clauses

> ^ $A \geq i \& B \geq j \rightarrow C \geq i+j$
> $A \leq i \& B \leq j \rightarrow C \leq i+j$ \mathbf{i}, \mathbf{j}
(direct) adders are larger than mergers but have better propagation properties
(direct) adders are larger than mergers but have better propagation properties

But, for small n, adders are actually smaller than mergers

Anyway, the size penalty can pay off (if under control)

While constructing, first use mergers. Then, as things get smaller, introduce adders

adders

mergers

Experiments illustrating the advantage of the hybrid approach:

Ignasi Abio, Robert Nieuwenhuis, Albert Oliveras, Enric Rodriguez-Carbonell; A parametric approach for smaller and better encodings of cardinality constraints; CP 2013

bSettings.pl (for cardinality constraints)

${ }^{\prime *}$

Name: 'unaryAdderType'
Constraint: 'int_plus'
Possible values:
'uadder' - (default) use $\mathrm{O}\left(\mathrm{N}^{\wedge} 2\right)$ encoding
'merger' - decompose to comparators $\mathrm{O}(\mathrm{NlogN})$ encoding
'hybrid' - hybrid approach:
BEE will decide if to decompose like merger or
encode like uadder - based on the generated CNF size.
*/
:- defineSetting(unaryAdderType,uadder).
/*
Name: 'sumBitsDecompose'
Constraint: 'bool_array_sum_op' / 'bool_array_pb_op'
Possible values:
'simple' - (default) divide and conquer technique
'buckets' - split to buckets, sum each bucket
and use linear constraints to sum buckets
'pairwise' - pairwise sorting network
*/
:- defineSetting(sumBitsDecompose,simple).

Outline

- Introduction
- BEE in a nutshell
http://amit.metodi.me/research/bee/
- The "new" stuff
- Complete Equi-Propagation
- Cardinality Constraints in BEE
- The binary extension of BEE

Binary Extension of BEE

Bit Blasting is obvious; But it is more about how the simplifications work

Where possible, blast into the unary core

Binary Multiplication

unary sums

Binary Multiplication (square)

		x_{4}	x_{3}	x_{2}	x_{1}	x_{0}
\times	x_{4}	x_{3}	x_{2}	x_{1}	x_{0}	
	z_{04}	z_{03}	z_{02}	z_{01}	z_{00}	
z_{14}	z_{13}	z_{12}	z_{11}	$\mathbf{z}_{\mathbf{0 1}}$		
z_{24}	z_{23}	z_{22}	$\mathbf{z}_{\mathbf{1 2}}$	$\mathbf{z}_{\mathbf{0 2}}$		
z_{34}	z_{33}	$\mathbf{z}_{\mathbf{2 3}}$	$\mathbf{z}_{\mathbf{1 3}}$	$\mathbf{z}_{\mathbf{0 3}}$		
$+z_{44}$	$\mathbf{z}_{\mathbf{3 4}}$	$\mathbf{z}_{\mathbf{2 4}}$	$\mathbf{z}_{\mathbf{1 4}}$	$\mathbf{z}_{\mathbf{0 4}}$		

$$
\text { equi propagation: } \quad z_{i j}=z_{j i}
$$

Binary Multiplication (square)

Conclusion

- The "new" stuff
- Complete Equi-Propagation
- Cardinality Constraints in BEE
- The binary extension of BEE

