
ANALYSIS OF PORTFOLIO-STYLE
PARALLEL SAT SOLVING ON CURRENT

MULTI-CORE ARCHITECTURES

Martin Aigner¹, Armin Biere², Christoph M. Kirsch¹,
Aina Niemetz², Mathias Preiner²

¹University of Salzburg
²Johannes Kepler University Linz

Pragmatics of SAT 2013
July 8, 2013

PREVIEW

•Our Goal:

• identify scalability bounds for Plain Parallel Portfolio (PPP)
SAT solving

• when and why does PPP scale?

OUR APPROACH

•We measure the slowdown of identical solvers

• on the same instance

• on shared-memory multi-core hardware

• And identify the cause of the slowdown

OVERVIEW

•Machine model

• Experimental setup and metrics

• Results

• Conclusion

MACHINE MODEL

• Simplest form: PRAM model

SQS�S� ���

0HPRU\

MACHINE MODEL

• Simplest form: PRAM model

SQS�S� ���

0HPRU\
Pro: Easy to

reason about
performance

MACHINE MODEL

• Simplest form: PRAM model

SQS�S� ���

0HPRU\
Con: Does

not reflect real
hardware

Pro: Easy to
reason about
performance

SQS�S� ���

0HPRU\

&DFKH

MACHINE MODEL

• Extended model: adding caches

SQS�S� ���

0HPRU\

&DFKH

MACHINE MODEL

• Extended model: adding caches

Con: Harder
to reason

about

SQS�S� ���

0HPRU\

&DFKH

MACHINE MODEL

• Extended model: adding caches

Con: Still not
realistic
enough

Con: Harder
to reason

about

MACHINE MODEL

• Extended model: adding core-private caches

SQS�S� ���

0HPRU\

&� &� &Q

MACHINE MODEL

• Extended model: adding core-private caches

SQS�S� ���

0HPRU\

&� &� &Q

Con: Even
harder to

reason about

MACHINE MODEL

• Extended model: adding core-private caches

SQS�S� ���

0HPRU\

&� &� &Q
Independent
caches need
reasoning on
consistency

Con: Even
harder to

reason about

MACHINE MODEL

• Extended model: adding core-private caches

SQS�S� ���

0HPRU\

&� &� &Q
Independent
caches need
reasoning on
consistency

Con: Even
harder to

reason about

Con: Still not
realistic

MACHINE MODEL

• Extended model: adding another cache level

SQS�S� ���

0HPRU\

&� &� &Q

�QG�OHYHO �QG�OHYHO

MACHINE MODEL

• Extended model: adding another cache level

SQS�S� ���

0HPRU\

&� &� &Q

�QG�OHYHO �QG�OHYHO

Con: Even
harder to

reason about

MACHINE MODEL

• Extended model: adding another cache level

SQS�S� ���

0HPRU\

&� &� &Q

�QG�OHYHO �QG�OHYHO

Con: Even
harder to

reason about

Different
forms of

sharing on
different levels

MACHINE MODEL

• Extended model: adding another cache level

SQS�S� ���

0HPRU\

&� &� &Q

�QG�OHYHO �QG�OHYHO

Con: Even
harder to

reason about

Different
forms of

sharing on
different levels

Con: Still not
realistic

WHAT IS REALISTIC?

���

0HPRU\

&38��

S�S�

/� /�

/� /�

S�S�

/� /�

/� /�

/�

&38�Q

S�S�

/� /�

/� /�

S�S�

/� /�

/� /�

/�

0HPRU\

WHAT CAN WE MEASURE?

���

0HPRU\

&38��

S�S�

/� /�

/� /�

S�S�

/� /�

/� /�

/�

&38�Q

S�S�

/� /�

/� /�

S�S�

/� /�

/� /�

/�

0HPRU\

WHAT CAN WE MEASURE?

���

0HPRU\

&38��

S�S�

/� /�

/� /�

S�S�

/� /�

/� /�

/�

&38�Q

S�S�

/� /�

/� /�

S�S�

/� /�

/� /�

/�

0HPRU\

execution
time

WHAT CAN WE MEASURE?

���

0HPRU\

&38��

S�S�

/� /�

/� /�

S�S�

/� /�

/� /�

/�

&38�Q

S�S�

/� /�

/� /�

S�S�

/� /�

/� /�

/�

0HPRU\

execution
time

miss rate

WHAT CAN WE MEASURE?

���

0HPRU\

&38��

S�S�

/� /�

/� /�

S�S�

/� /�

/� /�

/�

&38�Q

S�S�

/� /�

/� /�

S�S�

/� /�

/� /�

/�

0HPRU\

execution
time

miss rate

miss rate

WHAT CAN WE MEASURE?

���

0HPRU\

&38��

S�S�

/� /�

/� /�

S�S�

/� /�

/� /�

/�

&38�Q

S�S�

/� /�

/� /�

S�S�

/� /�

/� /�

/�

0HPRU\

execution
time

miss rate

miss rate

miss rate

WHAT CAN WE MEASURE?

���

0HPRU\

&38��

S�S�

/� /�

/� /�

S�S�

/� /�

/� /�

/�

&38�Q

S�S�

/� /�

/� /�

S�S�

/� /�

/� /�

/�

0HPRU\

execution
time

miss rate

miss rate

miss rate

memory
consumption

EXPERIMENTAL SETUP

• Five recent SAT solvers

• Lingeling, MiniSAT, CryptoMiniSAT, PicoSAT, Glucose

• Ten benchmarks: “solvable in reasonable time”

• listed in the paper

• Five shared-memory multi-core systems (Intel and AMD)

• ranging from 8 to 80 cores

EXPERIMENT: SLOWDOWN

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 10 20 30 40 50 60 70 80

 s
lo

w
d

o
w

n
 (

lo
w

e
r

is
 b

e
tt

e
r)

number of parallel identical jobs

cryptominisat
glucose
lingeling
minisat
picosat

Fig. 4: Slowdown of the execution for an increasing number of parallel jobs solving
the tra�c pcb unknown benchmark on the intel-xeon-e7-4850-80vcores machine.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10 20 30 40 50 60 70 80

 s
lo

w
d

o
w

n
 (

lo
w

e
r

is
 b

e
tt

e
r)

number of parallel identical jobs

cryptominisat
glucose
lingeling
minisat
picosat

Fig. 5: Slowdown of the execution for an increasing number of parallel jobs solving
the AProVE07-16 benchmark on the intel-xeon-e7-4850-80vcores machine.

EXPERIMENT: SLOWDOWN
Example: AproVE07-16 benchmark on up to

80 Intel hyper threads

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 10 20 30 40 50 60 70 80

 s
lo

w
d

o
w

n
 (

lo
w

e
r

is
 b

e
tt

e
r)

number of parallel identical jobs

cryptominisat
glucose
lingeling
minisat
picosat

Fig. 4: Slowdown of the execution for an increasing number of parallel jobs solving
the tra�c pcb unknown benchmark on the intel-xeon-e7-4850-80vcores machine.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10 20 30 40 50 60 70 80

 s
lo

w
d

o
w

n
 (

lo
w

e
r

is
 b

e
tt

e
r)

number of parallel identical jobs

cryptominisat
glucose
lingeling
minisat
picosat

Fig. 5: Slowdown of the execution for an increasing number of parallel jobs solving
the AProVE07-16 benchmark on the intel-xeon-e7-4850-80vcores machine.

EXPERIMENT: SLOWDOWN
Example: AproVE07-16 benchmark on up to

80 Intel hyper threads

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 10 20 30 40 50 60 70 80

 s
lo

w
d

o
w

n
 (

lo
w

e
r

is
 b

e
tt

e
r)

number of parallel identical jobs

cryptominisat
glucose
lingeling
minisat
picosat

Fig. 4: Slowdown of the execution for an increasing number of parallel jobs solving
the tra�c pcb unknown benchmark on the intel-xeon-e7-4850-80vcores machine.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10 20 30 40 50 60 70 80

 s
lo

w
d

o
w

n
 (

lo
w

e
r

is
 b

e
tt

e
r)

number of parallel identical jobs

cryptominisat
glucose
lingeling
minisat
picosat

Fig. 5: Slowdown of the execution for an increasing number of parallel jobs solving
the AProVE07-16 benchmark on the intel-xeon-e7-4850-80vcores machine.

Relative slowdown = t(n) / t(1)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 3 4 5 6 7 8

ru
n
tim

e
 [
s]

number of parallel identical jobs

cryptominisat
glucose
lingeling
minisat
picosat

Fig. 9: Absolute runtime required for an increasing number of parallel jobs solving
the narain-vpn-clauses-10 benchmark on the intel-i7-2600-8vcores machine.

 0

 0.05

 0.1

 0.15

 0.2

6pipe-6-ooo.shuffled-as.sat03-413.cnf AProVE07-16.cnf traffic-pcb-unknown.cnf

L
1
 c

a
ch

e
 m

is
s

ra
te

 (
lo

w
e
r

is
 b

e
tt
e
r)

benchmark

cryptominisat
glucose
lingeling
minisat
picosat

Fig. 10: Level 1 (L1) cache miss rate of a single solver instance solving the bench-
marks 6pip6-ooo.shu✏ed-as.sat03-413, AProVE07-16, and tra�c-pcb-unknown.

EXPERIMENT: SLOWDOWN

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 3 4 5 6 7 8

ru
n
tim

e
 [
s]

number of parallel identical jobs

cryptominisat
glucose
lingeling
minisat
picosat

Fig. 9: Absolute runtime required for an increasing number of parallel jobs solving
the narain-vpn-clauses-10 benchmark on the intel-i7-2600-8vcores machine.

 0

 0.05

 0.1

 0.15

 0.2

6pipe-6-ooo.shuffled-as.sat03-413.cnf AProVE07-16.cnf traffic-pcb-unknown.cnf

L
1
 c

a
ch

e
 m

is
s

ra
te

 (
lo

w
e
r

is
 b

e
tt
e
r)

benchmark

cryptominisat
glucose
lingeling
minisat
picosat

Fig. 10: Level 1 (L1) cache miss rate of a single solver instance solving the bench-
marks 6pip6-ooo.shu✏ed-as.sat03-413, AProVE07-16, and tra�c-pcb-unknown.

EXPERIMENT: SLOWDOWN

L1 cache miss rate correlates
with slowdown

WHAT DOES THAT MEAN?

• Low cache miss rate suggests a small working set (WS)

• the working set of a job is the memory that a job reads or
writes during a given time interval

•measuring the working set is tricky (choosing proper
intervals, sampling is either expensive or coarse grained)

• cache misses can be used as an indicator

ADVANTAGE OF A SMALL WS

���

0HPRU\

&38��

S�S�

/� /�

/� /�

S�S�

/� /�

/� /�

/�

&38�Q

S�S�

/� /�

/� /�

S�S�

/� /�

/� /�

/�

0HPRU\

ADVANTAGE OF A SMALL WS

���

0HPRU\

&38��

S�S�

/� /�

/� /�

S�S�

/� /�

/� /�

/�

&38�Q

S�S�

/� /�

/� /�

S�S�

/� /�

/� /�

/�

0HPRU\

ADVANTAGE OF A SMALL WS

���

0HPRU\

&38��

S�S�

/� /�

/� /�

S�S�

/� /�

/� /�

/�

&38�Q

S�S�

/� /�

/� /�

S�S�

/� /�

/� /�

/�

0HPRU\

ADVANTAGE OF A SMALL WS

���

0HPRU\

&38��

S�S�

/� /�

/� /�

S�S�

/� /�

/� /�

/�

&38�Q

S�S�

/� /�

/� /�

S�S�

/� /�

/� /�

/�

0HPRU\

ADVANTAGE OF A SMALL WS

���

0HPRU\

&38��

S�S�

/� /�

/� /�

S�S�

/� /�

/� /�

/�

&38�Q

S�S�

/� /�

/� /�

S�S�

/� /�

/� /�

/�

0HPRU\

ADVANTAGE OF A SMALL WS

���

0HPRU\

&38��

S�S�

/� /�

/� /�

S�S�

/� /�

/� /�

/�

&38�Q

S�S�

/� /�

/� /�

S�S�

/� /�

/� /�

/�

0HPRU\

ADVANTAGE OF A SMALL WS

���

0HPRU\

&38��

S�S�

/� /�

/� /�

S�S�

/� /�

/� /�

/�

&38�Q

S�S�

/� /�

/� /�

S�S�

/� /�

/� /�

/�

0HPRU\
little congestion on (shared)

main memory

IMPACT OF HYPER THREADING

• Average core slowdown: average slowdown when adding one
job and #jobs < #cores

• Average virtual core slowdown: average slowdown when
adding one job and #cores < #jobs <= #virtual cores

EXPERIMENT: ACSD V.S. AVCSD

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120 140 160 180 200

p
e
rc

e
n
ta

g
e
 s

lo
w

d
o
w

n
 p

e
r

(v
ir
tu

a
l)
 c

o
re

configurations sorted by slowdown (4 Intel-machines, 5 solvers, 10 benchmarks)

average core slowdown
average virtual core slowdown

Fig. 11: Distribution of both the average slowdown per physical core acsd in
percent and the average slowdown of virtual cores avcsd for all benchmarks and
all solvers, but only on the Intel machines with hyper-threading.

virtual cores share the same L1 cache, thus in essence the available L1 cache per
virtual core is reduced by a factor of two compared to using only physical cores.
The distribution of the slowdowns per core is rather skewed. For the largest
benchmark narain-vpn-clauses-10 it ranges from 1.23% with Lingeling on intel-
xeon-e7-80vcores to 54.27% with CryptoMiniSAT on intel-i7-2600-8vcores. Thus
we plotted acsd and avcsd for the intel machines in Fig. 11. Between di↵erent
SAT solvers the di↵erence in slowdown per core is less than a factor of two,
but Lingeling, the arguably most e�cient SAT solver w.r.t. memory usage, has
a small advantage in this regard if used as part of a portfolio.

3 Conclusion

This is the first detailed analysis on the expected worst-case slowdown for (plain)
parallel portfolio SAT solvers running on shared memory multi-core architec-
tures, when (A) copying instead of physically sharing clauses, and (B) ignoring
synchronization overhead. In future work we plan to extend the analysis to mea-
sure slowdown w.r.t cache size. The next step is to develop strategies for dynam-
ically measuring slowdown and using this information to control the number of
workers in parallel SAT solvers.

EXPERIMENT: ACSD V.S. AVCSD

up to this point: 2*WS
fits in the cache

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120 140 160 180 200

p
e
rc

e
n
ta

g
e
 s

lo
w

d
o
w

n
 p

e
r

(v
ir
tu

a
l)
 c

o
re

configurations sorted by slowdown (4 Intel-machines, 5 solvers, 10 benchmarks)

average core slowdown
average virtual core slowdown

Fig. 11: Distribution of both the average slowdown per physical core acsd in
percent and the average slowdown of virtual cores avcsd for all benchmarks and
all solvers, but only on the Intel machines with hyper-threading.

virtual cores share the same L1 cache, thus in essence the available L1 cache per
virtual core is reduced by a factor of two compared to using only physical cores.
The distribution of the slowdowns per core is rather skewed. For the largest
benchmark narain-vpn-clauses-10 it ranges from 1.23% with Lingeling on intel-
xeon-e7-80vcores to 54.27% with CryptoMiniSAT on intel-i7-2600-8vcores. Thus
we plotted acsd and avcsd for the intel machines in Fig. 11. Between di↵erent
SAT solvers the di↵erence in slowdown per core is less than a factor of two,
but Lingeling, the arguably most e�cient SAT solver w.r.t. memory usage, has
a small advantage in this regard if used as part of a portfolio.

3 Conclusion

This is the first detailed analysis on the expected worst-case slowdown for (plain)
parallel portfolio SAT solvers running on shared memory multi-core architec-
tures, when (A) copying instead of physically sharing clauses, and (B) ignoring
synchronization overhead. In future work we plan to extend the analysis to mea-
sure slowdown w.r.t cache size. The next step is to develop strategies for dynam-
ically measuring slowdown and using this information to control the number of
workers in parallel SAT solvers.

EXPERIMENT: ACSD V.S. AVCSD

up to this point: 2*WS
fits in the cache

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120 140 160 180 200

p
e
rc

e
n
ta

g
e
 s

lo
w

d
o
w

n
 p

e
r

(v
ir
tu

a
l)
 c

o
re

configurations sorted by slowdown (4 Intel-machines, 5 solvers, 10 benchmarks)

average core slowdown
average virtual core slowdown

Fig. 11: Distribution of both the average slowdown per physical core acsd in
percent and the average slowdown of virtual cores avcsd for all benchmarks and
all solvers, but only on the Intel machines with hyper-threading.

virtual cores share the same L1 cache, thus in essence the available L1 cache per
virtual core is reduced by a factor of two compared to using only physical cores.
The distribution of the slowdowns per core is rather skewed. For the largest
benchmark narain-vpn-clauses-10 it ranges from 1.23% with Lingeling on intel-
xeon-e7-80vcores to 54.27% with CryptoMiniSAT on intel-i7-2600-8vcores. Thus
we plotted acsd and avcsd for the intel machines in Fig. 11. Between di↵erent
SAT solvers the di↵erence in slowdown per core is less than a factor of two,
but Lingeling, the arguably most e�cient SAT solver w.r.t. memory usage, has
a small advantage in this regard if used as part of a portfolio.

3 Conclusion

This is the first detailed analysis on the expected worst-case slowdown for (plain)
parallel portfolio SAT solvers running on shared memory multi-core architec-
tures, when (A) copying instead of physically sharing clauses, and (B) ignoring
synchronization overhead. In future work we plan to extend the analysis to mea-
sure slowdown w.r.t cache size. The next step is to develop strategies for dynam-
ically measuring slowdown and using this information to control the number of
workers in parallel SAT solvers.

up to this point: WS
fits in the cache

EXPERIMENT: ACSD V.S. AVCSD

up to this point: 2*WS
fits in the cache

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120 140 160 180 200

p
e
rc

e
n
ta

g
e
 s

lo
w

d
o
w

n
 p

e
r

(v
ir
tu

a
l)
 c

o
re

configurations sorted by slowdown (4 Intel-machines, 5 solvers, 10 benchmarks)

average core slowdown
average virtual core slowdown

Fig. 11: Distribution of both the average slowdown per physical core acsd in
percent and the average slowdown of virtual cores avcsd for all benchmarks and
all solvers, but only on the Intel machines with hyper-threading.

virtual cores share the same L1 cache, thus in essence the available L1 cache per
virtual core is reduced by a factor of two compared to using only physical cores.
The distribution of the slowdowns per core is rather skewed. For the largest
benchmark narain-vpn-clauses-10 it ranges from 1.23% with Lingeling on intel-
xeon-e7-80vcores to 54.27% with CryptoMiniSAT on intel-i7-2600-8vcores. Thus
we plotted acsd and avcsd for the intel machines in Fig. 11. Between di↵erent
SAT solvers the di↵erence in slowdown per core is less than a factor of two,
but Lingeling, the arguably most e�cient SAT solver w.r.t. memory usage, has
a small advantage in this regard if used as part of a portfolio.

3 Conclusion

This is the first detailed analysis on the expected worst-case slowdown for (plain)
parallel portfolio SAT solvers running on shared memory multi-core architec-
tures, when (A) copying instead of physically sharing clauses, and (B) ignoring
synchronization overhead. In future work we plan to extend the analysis to mea-
sure slowdown w.r.t cache size. The next step is to develop strategies for dynam-
ically measuring slowdown and using this information to control the number of
workers in parallel SAT solvers.

up to this point: WS
fits in the cache

WS is too large to fit
in the cache

CONCLUSION & FUTURE WORK

•We have analyzed the expected slowdown for PPP

• Results suggest employing low working set solvers for PPP

• Future work:

• Analyze slowdown w.r.t. cache size (outlook for future
systems)

•Dynamic working set estimators to control the number of
parallel SAT solvers

THANK YOU
QUESTIONS?

