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PREVIEW

•Our Goal:

• identify scalability bounds for Plain Parallel Portfolio (PPP) 
SAT solving

• when and why does PPP scale?



OUR APPROACH

•We measure the slowdown of identical solvers 

• on the same instance

• on shared-memory multi-core hardware

• And identify the cause of the slowdown



OVERVIEW

•Machine model

• Experimental setup and metrics

• Results

• Conclusion
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WHAT IS REALISTIC?
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EXPERIMENTAL SETUP

• Five recent SAT solvers

• Lingeling, MiniSAT, CryptoMiniSAT, PicoSAT, Glucose

• Ten benchmarks: “solvable in reasonable time”

• listed in the paper

• Five shared-memory multi-core systems (Intel and AMD)

• ranging from 8 to 80 cores



EXPERIMENT: SLOWDOWN

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 10  20  30  40  50  60  70  80

 s
lo

w
d

o
w

n
 (

lo
w

e
r 

is
 b

e
tt

e
r)

number of parallel identical jobs

cryptominisat
glucose
lingeling
minisat
picosat

Fig. 4: Slowdown of the execution for an increasing number of parallel jobs solving
the tra�c pcb unknown benchmark on the intel-xeon-e7-4850-80vcores machine.
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Fig. 5: Slowdown of the execution for an increasing number of parallel jobs solving
the AProVE07-16 benchmark on the intel-xeon-e7-4850-80vcores machine.
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Relative slowdown = t(n) / t(1)
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Fig. 9: Absolute runtime required for an increasing number of parallel jobs solving
the narain-vpn-clauses-10 benchmark on the intel-i7-2600-8vcores machine.

 0

 0.05

 0.1

 0.15

 0.2

6pipe-6-ooo.shuffled-as.sat03-413.cnf AProVE07-16.cnf traffic-pcb-unknown.cnf

L
1
 c

a
ch

e
 m

is
s 

ra
te

 (
lo

w
e
r 

is
 b

e
tt
e
r)

benchmark

cryptominisat
glucose
lingeling
minisat
picosat

Fig. 10: Level 1 (L1) cache miss rate of a single solver instance solving the bench-
marks 6pip6-ooo.shu✏ed-as.sat03-413, AProVE07-16, and tra�c-pcb-unknown.

EXPERIMENT: SLOWDOWN



 0

 50

 100

 150

 200

 250

 300

 350

 400

 1  2  3  4  5  6  7  8

ru
n
tim

e
 [
s]

number of parallel identical jobs

cryptominisat
glucose
lingeling
minisat
picosat

Fig. 9: Absolute runtime required for an increasing number of parallel jobs solving
the narain-vpn-clauses-10 benchmark on the intel-i7-2600-8vcores machine.

 0

 0.05

 0.1

 0.15

 0.2

6pipe-6-ooo.shuffled-as.sat03-413.cnf AProVE07-16.cnf traffic-pcb-unknown.cnf

L
1
 c

a
ch

e
 m

is
s 

ra
te

 (
lo

w
e
r 

is
 b

e
tt
e
r)

benchmark

cryptominisat
glucose
lingeling
minisat
picosat

Fig. 10: Level 1 (L1) cache miss rate of a single solver instance solving the bench-
marks 6pip6-ooo.shu✏ed-as.sat03-413, AProVE07-16, and tra�c-pcb-unknown.

EXPERIMENT: SLOWDOWN

L1 cache miss rate correlates 
with slowdown



WHAT DOES THAT MEAN?

• Low cache miss rate suggests a small working set (WS)

• the working set of a job is the memory that a job reads or 
writes during a given time interval

•measuring the working set is tricky (choosing proper 
intervals, sampling is either expensive or coarse grained)

• cache misses can be used as an indicator
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IMPACT OF HYPER THREADING

• Average core slowdown: average slowdown when adding one 
job and #jobs < #cores

• Average virtual core slowdown: average slowdown when 
adding one job and #cores < #jobs <= #virtual cores



EXPERIMENT: ACSD V.S. AVCSD
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Fig. 11: Distribution of both the average slowdown per physical core acsd in
percent and the average slowdown of virtual cores avcsd for all benchmarks and
all solvers, but only on the Intel machines with hyper-threading.

virtual cores share the same L1 cache, thus in essence the available L1 cache per
virtual core is reduced by a factor of two compared to using only physical cores.
The distribution of the slowdowns per core is rather skewed. For the largest
benchmark narain-vpn-clauses-10 it ranges from 1.23% with Lingeling on intel-
xeon-e7-80vcores to 54.27% with CryptoMiniSAT on intel-i7-2600-8vcores. Thus
we plotted acsd and avcsd for the intel machines in Fig. 11. Between di↵erent
SAT solvers the di↵erence in slowdown per core is less than a factor of two,
but Lingeling, the arguably most e�cient SAT solver w.r.t. memory usage, has
a small advantage in this regard if used as part of a portfolio.

3 Conclusion

This is the first detailed analysis on the expected worst-case slowdown for (plain)
parallel portfolio SAT solvers running on shared memory multi-core architec-
tures, when (A) copying instead of physically sharing clauses, and (B) ignoring
synchronization overhead. In future work we plan to extend the analysis to mea-
sure slowdown w.r.t cache size. The next step is to develop strategies for dynam-
ically measuring slowdown and using this information to control the number of
workers in parallel SAT solvers.
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CONCLUSION & FUTURE WORK

•We have analyzed the expected slowdown for PPP

• Results suggest employing low working set solvers for PPP

• Future work:

• Analyze slowdown w.r.t. cache size (outlook for future 
systems)

•Dynamic working set estimators to control the number of 
parallel SAT solvers
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