
PackUp: Tools for Package Upgradability Solving
SYSTEM DESCRIPTION

Mikoláš Janota1 Inês Lynce1

Vasco Manquinho1 Joao Marques-Silva1,2

1 INESC-ID/IST, Lisbon, Portugal
2 CASL/CSI, University College Dublin, Ireland

supported by BEACON, MANCOOSI, BSOLO, and iExplain

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 1 / 13



Package Management Systems

install p

remove p

• may install other packages on which it depends

• may uninstall other packages with which it conflicts

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 2 / 13



Package Management Systems

install p

remove p

• may install other packages on which it depends

• may uninstall other packages with which it conflicts

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 2 / 13



Why is it Hard?

• p may depend on n or q

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 3 / 13



Why is it Hard?

• p may depend on n or q

install p

p depends n OR q

n conflicts z

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 3 / 13



Why is it Hard?

• p may depend on n or q

install p

p depends n OR q

n conflicts z

xp
xp =⇒ xn ∨ xq
xn =⇒ ¬xz

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 3 / 13



Why is it Hard?

• p may depend on n or q

install p

p depends n OR q

n conflicts z

xp
xp =⇒ xn ∨ xq
xn =⇒ ¬xz
¬xz ∨ xq

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 3 / 13



Why is it Hard?

• p may depend on n or q

install p

p depends n OR q

n conflicts z

xp
xp =⇒ xn ∨ xq
xn =⇒ ¬xz
¬xz ∨ xq

• Deciding whether a package can be installed or not is
NP-complete.

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 3 / 13



Is Any Solution Good?
Scenario Solutions

• p depends on q OR r

• q.installed=false

• r.installed=false

Morale

• some configurations are more preferable than others

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 4 / 13



Is Any Solution Good?
Scenario Solutions

• p depends on q OR r

• q.installed=false

• r.installed=false

1. install one of q , r

2. install both q , r

Morale

• some configurations are more preferable than others

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 4 / 13



Is Any Solution Good?
Scenario Solutions

• p depends on q OR r

• q.installed=false

• r.installed=false

1. install one of q , r

2. install both q , r

• p depends on q OR r

• q conflicts with n

• n.installed=true

Morale

• some configurations are more preferable than others

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 4 / 13



Is Any Solution Good?
Scenario Solutions

• p depends on q OR r

• q.installed=false

• r.installed=false

1. install one of q , r

2. install both q , r

• p depends on q OR r

• q conflicts with n

• n.installed=true

1. install y and remove q

2. install z and keep q

Morale

• some configurations are more preferable than others

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 4 / 13



Is Any Solution Good?
Scenario Solutions

• p depends on q OR r

• q.installed=false

• r.installed=false

1. install one of q , r

2. install both q , r

• p depends on q OR r

• q conflicts with n

• n.installed=true

1. install y and remove q

2. install z and keep q

Morale

• some configurations are more preferable than others

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 4 / 13



Problem Definition

• Each package has ...
• a name and a version.
• a set of conflicting packages.
• dependencies (CNF).
• information whether the package’s currently installed or not.

• Preference over solutions given by a lexicographic criterion
(f1, . . . , fn)

Example

package: p

version: 1

depends: q>=5, r=3

conflicts: x!=1, n

-new,-removed

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 5 / 13



Problem Definition

• Each package has ...
• a name and a version.
• a set of conflicting packages.
• dependencies (CNF).
• information whether the package’s currently installed or not.

• Preference over solutions given by a lexicographic criterion
(f1, . . . , fn)

Example

package: p

version: 1

depends: q>=5, r=3

conflicts: x!=1, n

-new,-removed

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 5 / 13



Problem Definition

• Each package has ...
• a name and a version.
• a set of conflicting packages.
• dependencies (CNF).
• information whether the package’s currently installed or not.

• Preference over solutions given by a lexicographic criterion
(f1, . . . , fn)

Example

package: p

version: 1

depends: q>=5, r=3

conflicts: x!=1, n

-new,-removed

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 5 / 13



Partial Weighted MaxSAT

Problem

• a set of hard clauses

• a set of soft clauses, (W , c)

Solution
An variable valuation that

• satisfies all hard clauses

• maximizes the sum of weights satisfied soft clauses

• Can be easily translated to OPB and other similar formalisms.

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 6 / 13



Partial Weighted MaxSAT

Problem

• a set of hard clauses

• a set of soft clauses, (W , c)

Solution
An variable valuation that

• satisfies all hard clauses

• maximizes the sum of weights satisfied soft clauses

• Can be easily translated to OPB and other similar formalisms.

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 6 / 13



Partial Weighted MaxSAT

Problem

• a set of hard clauses

• a set of soft clauses, (W , c)

Solution
An variable valuation that

• satisfies all hard clauses

• maximizes the sum of weights satisfied soft clauses

• Can be easily translated to OPB and other similar formalisms.

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 6 / 13



Problem to MaxSAT

• Hard clauses represent conflicts and dependencies.

• Soft clauses represent preference.

• Weights chosen to represent the lexicographic ordering, i.e.,
for a criterion (f1, . . . , fn)

Wi = 1 + Σi<jWj × cj

where cj is the number of clauses generated for the function fj .

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 7 / 13



Problem to MaxSAT

• Hard clauses represent conflicts and dependencies.

• Soft clauses represent preference.

• Weights chosen to represent the lexicographic ordering, i.e.,
for a criterion (f1, . . . , fn)

Wi = 1 + Σi<jWj × cj

where cj is the number of clauses generated for the function fj .

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 7 / 13



Encoding (straightforward version)

• for each package (p, v) introduce a variable xvp

• (p,1).depends = z>=3 as ¬x1p ∨ x3z ∨ · · · ∨ xkz

• (p,1).conflicts = q=3 as ¬x1p ∨ ¬x3q
• install p as x1p ∨ · · · ∨ x lp

• preferences in an analogous fashion, e.g. p=3 should stay
installed

(W , x3p )

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 8 / 13



Encoding (straightforward version)

• for each package (p, v) introduce a variable xvp

• (p,1).depends = z>=3 as ¬x1p ∨ x3z ∨ · · · ∨ xkz

• (p,1).conflicts = q=3 as ¬x1p ∨ ¬x3q
• install p as x1p ∨ · · · ∨ x lp

• preferences in an analogous fashion, e.g. p=3 should stay
installed

(W , x3p )

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 8 / 13



Encoding (straightforward version)

• for each package (p, v) introduce a variable xvp

• (p,1).depends = z>=3 as ¬x1p ∨ x3z ∨ · · · ∨ xkz

• (p,1).conflicts = q=3 as ¬x1p ∨ ¬x3q
• install p as x1p ∨ · · · ∨ x lp

• preferences in an analogous fashion, e.g. p=3 should stay
installed

(W , x3p )

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 8 / 13



Encoding (straightforward version)

• for each package (p, v) introduce a variable xvp

• (p,1).depends = z>=3 as ¬x1p ∨ x3z ∨ · · · ∨ xkz

• (p,1).conflicts = q=3 as ¬x1p ∨ ¬x3q
• install p as x1p ∨ · · · ∨ x lp

• preferences in an analogous fashion, e.g. p=3 should stay
installed

(W , x3p )

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 8 / 13



Encoding Versions

Common Intervals
(p,1).depends = z>=3 as ¬x1p ∨ x3z ∨ x4z∨ x5z · · · ∨ xkz

(q,1).depends = z>=5 as ¬x1q∨ x5z ∨ · · · ∨ xkz

Interval Joining

¬x1q ∨ x3z ∨ x4z ∨ i�5z
¬x1q ∨ i�5z

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 9 / 13



Encoding Versions

Common Intervals
(p,1).depends = z>=3 as ¬x1p ∨ x3z ∨ x4z∨ x5z · · · ∨ xkz

(q,1).depends = z>=5 as ¬x1q∨ x5z ∨ · · · ∨ xkz

Interval Joining

¬x1q ∨ x3z ∨ x4z ∨ i�5z
¬x1q ∨ i�5z

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 9 / 13



Encoding Versions

Common Intervals
(p,1).depends = z>=3 as ¬x1p ∨ x3z ∨ x4z∨ x5z · · · ∨ xkz

(q,1).depends = z>=5 as ¬x1q∨ x5z ∨ · · · ∨ xkz

Interval Joining

¬x1q ∨ x3z ∨ x4z ∨ i�5z
¬x1q ∨ i�5z

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 9 / 13



Interval variables

Introduce Fresh Variables Representing Intervals

• i�vp — a version greater than or equal to v of p is installed

• i�vp — a version less than or equal to v of p is installed

• u�vp — versions greater than or equal to v of p are uninstalled

• u�vp — versions less than or equal to v of p are uninstalled

Interval Variables’ Semantics Is Defined Inductively

¬i�vp ∨ xvp ∨ i�v+1
p

(¬ u�vp ∨¬xvp ) ∧ (¬ u�vp ∨ u�v−1
p )

. . .

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 10 / 13



Interval variables

Introduce Fresh Variables Representing Intervals

• i�vp — a version greater than or equal to v of p is installed

• i�vp — a version less than or equal to v of p is installed

• u�vp — versions greater than or equal to v of p are uninstalled

• u�vp — versions less than or equal to v of p are uninstalled

Interval Variables’ Semantics Is Defined Inductively

¬i�vp ∨ xvp ∨ i�v+1
p

(¬ u�vp ∨¬xvp ) ∧ (¬ u�vp ∨ u�v−1
p )

. . .

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 10 / 13



Computing Lexicographic Optimization

• Solvers tend to work poorly for large weights.

• Solve iteratively, i.e. minimize each function separately.

minimizing criterion (f1, . . . , fn)

1 for i ← 1 . . . n do
2 vi ← minimize(fi ) in φ
3 φ← φ ∧ (fi = vi )

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 11 / 13



Computing Lexicographic Optimization

• Solvers tend to work poorly for large weights.

• Solve iteratively, i.e. minimize each function separately.

minimizing criterion (f1, . . . , fn)

1 for i ← 1 . . . n do
2 vi ← minimize(fi ) in φ
3 φ← φ ∧ (fi = vi )

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 11 / 13



Invoking PackUP

• MaxSAT solver—solver invoked just once

--max-sat \
--external-solver ’msuncore -wl -bmo’

• OPB solver—solver invoked multiple times

--external-solver ’minisatp’ \
--multiplication-string ’ ’

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 12 / 13



Invoking PackUP

• MaxSAT solver—solver invoked just once

--max-sat \
--external-solver ’msuncore -wl -bmo’

• OPB solver—solver invoked multiple times

--external-solver ’minisatp’ \
--multiplication-string ’ ’

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 12 / 13



Summary

• PackUP enables solving package upgradability problem with
an external solver

• Instantiations cudf2msu and cudf2opb participated in the

3rd MISC Live, winning 4/5 tracks.

• The solver can be a MaxSAT or OPB.

• The use of OPB enables iterative approach to lexicographic
optimization

• Package versions are encoded using interval variables.

• Released under GPL
http://sat.inesc-id.pt/~mikolas/sw/packup

Janota et al. (INESC-ID & UCD) PackUp: Tools for Package Upgradability Solving 13 / 13

http://sat.inesc-id.pt/~mikolas/sw/packup

